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Abstract—Preventing health issues is a crucial aspect of the
medical field, particularly when it comes to mild cognitive im-
pairment (MCI), which is a risk factor for developing dementia.
Early detection of MCI is essential, and there are two types of
MCI: amnestic MCI (aMCI) and non-amnestic MCI (naMCI).
However, it is challenging to differentiate between individuals
with MCI and those who are aging normally. Electroencephalog-
raphy (EEG) is a promising modality for diagnosing MCI, which
provides information about an individual’s cognitive state during
a clinical examination. This research aims to distinguish between
individuals diagnosed with MCI as either aMCI or naMCI,
and healthy controls (HC) during a verbal fluency task (VFT).
To achieve this, a new MCI detection method based on the
transformer architecture was proposed. This method makes use
of EEG data and achieves up to 94.78% accuracy.

Index Terms—MCI detection, EEG, verbal fluency task, deep
learning, transformer network

I. INTRODUCTION

Mild cognitive impairment (MCI) [1] is a condition that
causes a deterioration in cognitive ability that primarily affects
the elderly. Besides, MCI is thought to be the crossover
between normal aging cognitive changes and early dementia.
On the other side, dementia is the ultimate stage of irreversible
deterioration in cognitive ability, namely memory and other
cognitive processes like language and reasoning. In this regard,
Alzheimer’s disease (AD) [2] is one of the most well-known
and prevalent kinds of dementia. However, the degree of
memory impairment distinguishes MCI from dementia. The
consequences of MCI have no significant influence on patients’
daily activities. Whereas dementia can cause disruptions in
daily tasks. However, depending on the severity and the dif-
ferent areas (learning, memory, executive functions, etc.) that it
may affect, MCI can be divided into two main subtypes [3]–
[5] including amnestic MCI (aMCI) and non-amnestic MCI
(naMCI). However, aMCI occurs when just memory is classed
as impaired among the cognitive domains. On the other hand,

naMCI refers to impairment in cognitive domains other than
memory (language, cognition, judgment, etc.).

The diagnosis of any disease in its early stages is very
important. It allows early intervention to treat, delay or
reduce the impact and damage of the disease. Degen-
erative diseases frequently begin early, proceed gradually,
and finally significantly impair cognitive functions. In the
case of MCI, it should be underlined that early diagno-
sis should be taken into account to stop its development,
especially aMCI to AD. However, MCI can be detected
by a clinical neuropsychological assessment such as the
Mini-Mental State Examination (MMSE) or the Montreal
Cognitive Assessment (MoCA). Nowadays, early diagno-
sis through advanced neuroimaging techniques seems to be
much more practical. These modalities include magnetic reso-
nance imaging (MRI), functional MRI (fMRI), single photon
emission computed tomography (SPECT), positron emission
tomography (PET), fluorodeoxyglucose (FDG)-PET, mag-
netoencephalography (MEG), functional near-infrared spec-
troscopy (fNIRS), electroencephalography (EEG) [6]–[10].
Among these modalities, EEG remains the most used due to
its several advantages. It is a non-invasive neuroimaging tech-
nique that records and monitors brain activity using electrodes
(up to 256) placed on the scalp. As compared to MRI, PET, or
CT, this modality collects data from patients for future analysis
with a higher temporal resolution and, more crucially, at a
cheaper cost. These data will be processed through artificial
intelligence (AI) approaches using machine learning (ML)
and/or deep learning (DL), allowing for the development of a
self-diagnostic concept. However, this modality is commonly
used to predict different types of neurological diseases [11].
For instance, in a recent clinical study, Siuly et al. [6] proposed
a framework for MCI detection based on EEG during a
resting state. They applied ML techniques, namely Extreme
Learning Machine (ELM), Support Vector Machine (SVM),
and K-Nearest Neighbor (KNN), to distinguish MCI from
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HC patients. In addition, another strategy was used by Wen
et al. [12] to compare this time MCI patients to healthy
ones who all had type II diabetes. They used CNN with
multispectral images obtained from EEG signals and achieved
88% accuracy. To distinguish between HC, MCI, and AD,
Huggins et al. [13] used topographic images obtained by trans-
forming EEG signals from their time-frequency representation.
Concerning classification, they employed an AlexNet DL
model. What makes their approach different from others is the
transformation of EEG signals into images. Gkenios et al. [14]
made a comparison between three recurrent neural networks
(RNNs) for diagnosing AD and MCI using EEG. They used
a simple long short-term memory (LSTM) model, and two
other hybrids combining convolutional neural networks (CNN)
with simple LSTM (Conv-LSTM) and CNN with Bidirectional
LSTM (Conv-BLSTM) to make the classification between
healthy patients, AD and MCI patients. Their results showed
that Conv-LSTM performs well in the case of two-class
classification (HC vs. MCI) while Conv-BLSTM performs
well for all three classes. Recently, Fouladi et al. [15] proposed
two methods based on DL architectures to classify between
MCI and AD. The first is a modified CNN architecture, and
the second is a convolutional autoencoder (Conv-AE) neural
network, with which they obtained scores of 92% and 89%,
respectively.

The main purpose of this paper is to present a novel
approach that can automatically diagnose MCI to highlight the
MCI identification issue. This is accomplished by differentiat-
ing between individuals with amnesic MCI, non-amnesic MCI,
and healthy controls (HC) using EEG data collected during a
specific cognitive test known as the verbal fluency task (VFT).
This test is the relevant cognitive assessment that has been
used to measure individuals’ capacity for complex cognitive
functioning, such as language and executive functioning [16].
The multiclass classification is an important part of this work
and will be done using our proposed method. The remainder of
this paper is as follows. In section II, we present the proposed
method for MCI detection. Section III presents the findings,
while Section IV provides the conclusion.

II. MATERIALS AND METHODS

This section is reserved for the description of the proposed
method for detecting MCI by detailing the experimental data
and the different manipulations performed during the proce-
dure. The following pipeline, which is depicted in Figure 1,
includes all these processes.

A. Data Description

The EEG data used in this work were collected in a research
study conducted by Grässler et al. [17], who provided a
detailed description of the data and recording conditions. This
data is a part of the data recorded during three successive cog-
nitive tasks, namely Stroop, N-back, and VFT. These cognitive
tests are performed on a computer, on which each instruction
associated with each test is displayed. 52 individuals provided
the data for this study, comprising 26 MCI subjects (13 aMCI

and 13 naMCI), as well as 26 HC. Participants are Germans
(males and females), educated, and aged between 55 to 80
years. For precision, the recording occurred in the morning
for some participants and in the afternoon for others, with
an average duration of 9 minutes. The equipment used for
recording is the MOVE Brain Vision wireless system, with an
EEG/fNIRS cap. The cap is mounted following the standard
10-20 system configuration. In this paper, we focus only on the
EEG recordings during the VFT task, which is described as:
EEG: Signals are recorded at a frequency sampling of 1000 Hz
using 32 electrodes (AFp1, AFp2, AFF5h, AFF1h, AFF2h,
AFF6h, F7, F8, FFC5h, FFC1h, FFC2h, FFC6h, FTT7h,
FCC3h, FCC4h, FTT8h, TTP7h, CCP3h, CCP4h, TTP8h, TP9,
TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10).
Verbal fluency task: The VFT is a cognitive assessment tool
that consists in evaluating the capacity of the subjects to gen-
erate, in a defined time, a maximum of words corresponding to
certain criteria of the task [16]. However, the participants have
to pronounce as many words (nouns, verbs, adjectives) that
start with a specific letter, this is the phonological criterion.
Similarly, they are asked to say as many words as possible that
belong to a specific category, this is the semantic criterion.
Therefore, each assessment condition will be run three times
(trials) as a block and will last 30 seconds (s). A resting block
of 31-34 s is set between each block.

B. Data Preparation and Pre-processing

We extracted the VFT-related portions of the raw data while
leaving out the other test components, taking into considera-
tion the various tests present in the raw data. Subsequently,
the data were resampled from 1000.0 Hz to 128.0 Hz to
reduce complexity and data size. For filtering, we applied a
notch filter to remove the 50 Hz frequency band (according
to the European electricity standard) from the data. This filter
attenuates the power line disturbance frequency. In addition,
we applied a 3rd-order Butterworth bandpass filter with a
lower and upper-frequency band of 0.1 Hz and 32 Hz, respec-
tively. This choice is based on the fact that the brain activity
of interest for the detection of MCI and AD is set in this
frequency range [14]. Finally, a 3-s window with a 1-s overlap
was chosen to segment the data into equal-sized epochs.

C. Proposed Model Analysis

1) Used architecture: The proposed method is based on the
Transformer architecture [18], which introduces the concept of
self-attention, which allows the model to weigh the importance
of different parts of the input when making predictions. The
key innovation of the transformer is the use of multi-head
attention, which allows the model to attend to different parts of
the input simultaneously and learn more complex relationships
between encoded features. It consists of stacks (up to 6 each
containing the same structure) of Encoders and Decoders.
In the proposed model, we built the Encoder part as in the
original description, by creating two sub-layers, respectively, a
multi-head attention module and a feedforward neural network
with exactly two deeply connected layers (Dense layers).
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Fig. 1: The pipeline of the proposed method for MCI detection.

The ReLu activation function is applied after the first Dense
before passing the output to the second layer. A residual
connection, notably an Add layer followed by a Normalization
layer is defined after each of these two blocks. They are
used to add the input with the expected output of each block
and normalize them in order to serve as input for the next
layer. Assuming x, an input of a given sub-layer, it could be
represented by Sublayer(x), then its output will be proceeded
by the normalization layer as LayerNorm(x+Sublayer(x)).
Finally, for reasons of conformity with the output size of each
sub-layer, and to facilitate subsequent operations, the outputs
will be reduced to the same size as that of the layer embedding
the initial input. A value corresponding to this dimension will
therefore be set by an essential parameter called dmodel, whose
maximum value must not exceed 512 as mentioned in the
original paper [18].

2) Contribution: We have added, alongside the existing
architecture, the temporal embedding and spatial embedding
features extractors using different types of convolution opera-
tions. These extractors replace the input embedding technique
and positional encoding used in the original Encoder. However,
convolution operations are well known in the field of computer
vision for their exploits, especially in the context of image
recognition. They are also used for other tasks, such as
signal processing and classification [19]. Their strengths lie
in the extraction of features from data using a set of filters.
These filters, the higher they are, allow for the detection and
extraction of various shapes and patterns from the signals.
In this regard, DL architectures based on these concepts are
varied and naturally powerful. The best known is CNN, whose
main concept is to use both convolution and downsampling
operations. This allows for a reduction in the spatial dimension
of the data while retaining the important features.

Temporal embedding is defined with the goal of exploring

each input data to extract relevant features along the time
axis, from the signal produced by each electrode individually.
Therefore, we used a regular convolution by applying a
Conv2D layer with a kernel of 1 × k size instead of k × k
to consider only one signal at a time while sliding the kernel
(windows) to reach all electrodes independently. This same
process will be repeated F times to produce various feature
maps, where F defines the number of filters.

Spatial embedding is performed on the electrode axis to
extract features related independently to spatial correlations
as well as cross-channel correlations [20] from all electrodes
at each time point. For this reason, we applied a depthwise
separable convolutions [21]. Unlike the standard convolution,
which extracts simultaneously the spatial and channel-wise
features from a multi-dimension input, a depthwise separable
convolution operates separately in two stages: depthwise con-
volution and pointwise convolution. However, the depthwise
convolution is performed by convolving a k × k size depth
kernel with each channel of an input independently. While
the pointwise convolution performs by iterating point by point
over the pooled feature maps outputted by the depthwise
convolution to realize a linear combination. It is similar to the
standard convolution but rather uses a kernel size of 1 × 1.
Depthwise separable convolutions are less computational-
intensive because they significantly reduce the number of
parameters resulting from convolution operations [22], [23].
Table I summarizes the different components of these two
embeddings and their potential parameters. The outputs of
the encoders corresponding respectively to the temporal and
spatial features will then be concatenated, then fitted into the
classification network. Finally, as in the original Transformers,
the number of encoders can vary between 1 and 6 layers. As
well as the number of heads of the modules related to Multi-
head attention which is between 1 and 8. But it is necessary
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to know that for each temporal and spatial embedding, an
independent layer of the encoder corresponds exactly. In
addition, to have removed the positional encoding unit and the
linear embedding of the inputs, we also rejected the notion of
masking, used in the native architecture.

TABLE I: Summary of embedding module layers with their
parameters.

Layer name Filter Value Output shape
Temporal embedding

Input – – C × T

Reshape – – C × T × 1

Conv2D F1 1×K1 C × T × F1

BatchNormalization – – C × T × F1

Activation – relu C × T × F1

AveragePooling2D – 1× P1 C × (T/P1)× F1

Dropout – p1 C × (T/P1)× F1

Reshape – – F1 × (C ∗ (T/P1))

Dense – dmodel F1× dmodel

Spatial embedding
Input – – C × T

Reshape – – C × T × 1

DepthwiseConv2D D C × 1 1× T ×D

BatchNormalization – – 1× T ×D

Activation – relu 1× T ×D

AveragePooling2D – 1× P2 1× (T/P2)×D

Dropout – p2 1× (T/P2)×D

SeparableConv2D F2 1×K2 1× (T/P2)× F2

BatchNormalization – – 1× (T/P2)× F2

Activation – relu 1× (T/P2)× F2

AveragePooling2D – 1× P3 1× (T/(P2 ∗ P3))× F2

Dropout – p3 1× (T/(P2 ∗ P3))× F2

Reshape – – F2 × (1 ∗ (T/(P2 ∗ P3)))

Dense – dmodel F2 × dmodel

Channel : C = 32; T ime : T = 384; Filter : F1 = F2 = 64; D = 1,
Kernel : K1 = K2 = 32; P1 = 9; p1 = p2 = p3 = 0.1; P2 = 4;
P3 = 6; and dmodel = 128.

III. EXPERIMENTAL VALIDATION

In this section, we describe the experimental setting and the
performance outcomes resulting from our approach.

A. Data Setup

The data is separated into three subsets based on the phases
of a classification task: the training set (60%), the validation
set (10%), and the testing set (30%), which can be used
respectively to train the model, validate the model at each
step of the training, and test and validate the performance of
the final model.

B. Classification results

All the experiments were carried out on a Hp Pavilion
Gaming 15 laptop running on the Windows 11 operating
system and equipped with an Intel® Core™ i7-10870H CPU @

2.20GHz and an NVIDIA GeForce RTX 2060 (Max Q-Design)
graphics card supporting CUDA 11.8 (cuDNN 8.1). We trained
the model on our dataset, which contained 52 participants in
total. Each data input is in the form of the number of electrodes
with the number of samples. After splitting the data into a
number of segments of the same size. The new data format
is defined as (number of segments × number of electrodes
× number of samples). The segmentation takes into account
the segment duration and the overlap, both in seconds. After
a number of trials combining different options for segment
length and overlap. We selected the 3s-1s combination, which
gave a better result.

According to the three subsets, the total number of record-
ings was (14183, 32, 384), of which (9928, 32, 384) were used
for training and (4255, 32, 384) for testing. A total of (9928,
32, 384) recording were made after then, of which (8935, 32,
384) were used for training and (993, 32, 384) for validation.
Based on the confusion matrix results, the true positive values
of healthy, aMCI, and naMCI are respectively equal to 2082,
979, and 972, (per Figure 2). We evaluated the performance of
our model in terms of statistical scores computed from the con-
fusion matrix. This includes the values of true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). The concerned metrics [24] are accuracy (94.78%), pre-
cision (96.39%), recall (i,e,. sensitivity) (93.37%), specificity
(93.26%), and F1-score (95.20%).

Fig. 2: Confusion Matrix.

The history of the training and validation curves for 100
epochs is shown in Figure 3. After achieving the maximum
number of epochs, the accuracy of these curves increases while
their losses decrease.

Fig. 3: Training history: training and validation accuracy, and
training and validation loss for 100 iterations.
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C. Comparison results

Once the best combination was obtained, we compared our
method with two others in the literature. In [14], the authors
proposed a hybrid model based on CNN and bidirectional
LSTM to perform a classification between AD, MCI, and HC.
The achieved accuracy test is equal to 94.59%. In [15], their
aim was to distinguish people with AD from those with MCI.
They reached a score of 89% with the Conv-AE model and
92% with the CNN. In this regard, we have implemented the
previously cited models using our dataset. Table II summarizes
the obtained results. Our approach achieved a score of 94.59%,
surpassing the performance demonstrated by the results of this
comparison.

TABLE II: Comparison findings.

Authors Methods Testing accuracy
Gkenios et al. [14] CNN+BLSTM 85%

Fouladi et al. [15] CNN / Conv-AE 90%

Proposed method Transformer model 94.78%

IV. CONCLUSION

In this paper, we proposed a new MCI detection method
based on the transformer model using EEG signals. The EEG
recording was done during a verbal fluency task. Our goal was
to distinguish three classes, including HC, aMCI, and naMCI,
and we achieved a classification result of 94.78%. Finally, we
compared our proposed method with other existing studies in
the literature dealing with the same topic. Thanks to the tem-
poral embedding and spatial embedding that we introduced,
the results demonstrated the performance and efficiency of our
approach based on the Transformer architecture. This approach
remains efficient because of the high learning capability due
to the parallel processing of the entire input features.
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A. V. L. De Araújo, L. F. Basile, and D. Abasolo, “Deep learning of
resting-state electroencephalogram signals for three-class classification
of Alzheimer’s disease, mild cognitive impairment and healthy ageing,”
Journal of Neural Engineering, vol. 18, no. 4, p. 046087, 2021.

[14] G. Gkenios, K. Latsiou, K. Diamantaras, I. Chouvarda, and M. Tsolaki,
“Diagnosis of Alzheimer’s disease and mild cognitive impairment using
EEG and recurrent neural networks,” in 2022 44th Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), pp. 3179–3182, IEEE, 2022.

[15] S. Fouladi, A. A. Safaei, N. Mammone, F. Ghaderi, and M. Ebadi,
“Efficient deep neural networks for classification of Alzheimer’s disease
and mild cognitive impairment from scalp EEG recordings,” Cognitive
Computation, vol. 14, no. 4, pp. 1247–1268, 2022.

[16] L. Olabarrieta-Landa, E. L. Torre, J. C. López-Mugartza, E. Bialystok,
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