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Abstract—Mild cognitive impairment (MCI) is a condition
marked by impairment in one or more cognitive areas, but
not necessarily all of them. It is frequently referred to as the
stage between typical age-related cognitive decline and dementia.
Recent studies had focused on different modalities to assess
disorders such as dementia and Alzheimer’s disease (AD). Heart
rate variability (HRV) stands out among them as having the
potential to identify MCI. In this paper, we propose a new
MCI detection method using HRV signals. MCI patients were
compared to age-matched healthy controls (HC) for the effect of
performing additional cognitive and postural tasks. Twenty-four
participants were enrolled to complete three tasks: a postural
balance master task, two cognitive tasks called CERAD+ and
Neurotrack, and baseline. HRV data were recorded during
these experiments. Six machine learning (ML) models were
examined for task classification including k-Nearest Neighbors,
Decision tree, Random Forest, Extra Trees, Gradient Boosting,
and XGBoost. To avoid over-fitting, cross-validation (CV) was
employed to assess how well the built models performed. To
boost accuracy, a voting ensemble classifier model is developed
that combines the top ML models with the highest accuracy
rates. The findings of this study demonstrated that MCI might be
diagnosed with ML classifiers utilizing HRV signals, particularly
when postural and cognitive functions are taken into account.

Index Terms—MCI detection, HRV, healthy aging, Neurotrack,
CERAD+, balance master, ML.

I. INTRODUCTION

The prodromal stage of a condition that worsens and causes
dementia and Alzheimer’s disease (AD) is mild cognitive
impairment (MCI). MCI is a condition that does not yet
significantly affect a person’s ability to carry out daily activi-
ties independently. MCI can be divided into amnestic (aMCI)
and non-amnestic (nMCI) subtypes. The primary characteristic
of aMCI is memory loss, and it is more likely to be an
early sign of AD. On the other side, nMCI stands for non-
memory domains, which is a decrease that may be caused
by a variety of factors. Early monitoring and diagnosis of

MCI may be on the horizon as a result of considerable
advances in scientific study, which may be most useful in
the early stages of the illness. Correspondingly, systems with
high accuracy rates are increasingly needed to help with the
early detection of MCI. Nearly 5-15% of MCI patients acquire
dementia within one year, placing them at elevated risk for
dementia development [1]. Moreover, older persons with MCI
have been found to exhibit postural instability and balance
issues. Falls are more common among elderly people with
MCI than among older people who are cognitively well [2]. As
a result, early MCI identification can be extremely important
for early intervention, prevention, and the right therapies. The
potential of ML to extract characteristics has great promise
for aiding in illness. In particular, more focus has been placed
in recent years on ML systems to assist in the diagnosis
of MCI. Most works concentrate on neuroimaging such as
magnetic resonance imaging (MRI) [3], Fluorodeoxyglucose-
Positron Emission Tomography (FDG-PET) [4], and single-
photon emission computerized tomography (SPECT) [5] as
well as biomarker analysis [6]. Recently, non-invasive di-
agnostic techniques based on wearable technologies, such
as EEG and HRV, have come to greater attention in MCI
research. According to [7], the authors suggested employing
the wearable CorSense device to measure HRV signals to
identify differences between healthy and MCI participants
based on statistical analysis. On the other side, cognitive and
postural (i.e., motor) tasks are frequently employed in research
investigations. These tasks may be more sensitive in identify-
ing very specific alterations in brain function brought on by
conditions including AD and MCI. Recently, studies [8], [9]
have demonstrated that data acquisition with specific cognitive
tasks may include helpful information for distinguishing AD
and MCI patients. Furthermore, recent work [10] has used
cognitive-motor dual-task paradigms to examine more subtle
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alterations in postural control linked to cognitive decline in
older people in both healthy and MCI-affected individuals.
To this regard, HRV data related to cognitive-motor tasks
may provide relevant information that allows ML classifiers
to classify MCI from HC patients. It is therefore worth
looking into whether additional cognitive and postural tasks
while HRV acquisition might increase ML-based classification
accuracy in MCI detection. In this paper, we suggest a new
method for MCI identification that makes use of baseline,
postural, and cognitive HRV signals. The purpose of this study
is to evaluate the classification performance of ML employing
HRV signals to identify MCI patients from healthy controls at
baseline, during cognitive and postural tasks.
The remainder of this paper is as follows. Section II presents
the background of HRV analysis. Section III details the
proposed method. Section IV presents the results of the
experiment and data analysis. In Section V, the findings are
analyzed and interpreted, and the discussion concludes with
recommendations for future research.

II. HRV ANALYSIS

Based on portable sensor technology, HRV is frequently
used in scientific and clinical studies to detect various anoma-
lies. HRV is the interval variation between successive heart-
beats (RR-intervals), which are known as interbeat intervals
(IBIs). It may be analyzed in the time, frequency, and non-
linear domains. Table I indicted the most often used indices
for HRV analysis. Besides, the analysis may be performed
with either a long-term (LT) duration lasting 24 hours or
a short-term (ST) duration lasting 5-minutes (min). It is
recommended to make recordings that last 5-min or more for
HRV quantitative analysis. On the other hand, recent studies
[11], [12] have shown that employing HRV characteristics in
an ultra-short-term (UST) recording (< 5-Min) makes HRV
indices accurate for recordings under that time. Theoretically,
it should be understood that several HRV metrics become
insignificant if calculated in a UTS period [13]. The time,
frequency, and non-linear domains indices used to describe
LT, ST, and UST HRV recordings are the same, although
their predictive abilities many vary [14]. Uncertainty still exists
regarding the minimum time epoch at which all HRV features
domains may be accurately documented. The next subsections
discuss the HRV features and the relationship between epoch
required to estimate recording values.

A. Temporal features

The degree of variability in measures of the IBI is quantified
using time-domain HRV indices which are produced from
straightforward statistical computations. HRV data collected
during intervals ranging from 1-min to more than 24 hours
is often assessed by HRV time-domain indices. Given that
multiple time-domain HRV indices have been proven to be
accurate, recent studies [11], [12] have advocated the use of
ultra-short recordings. In addition to offering suitable mini-
mum ST measurement intervals, the authors in [12] also put
out recommendations for ultra-short measurement intervals.

TABLE I: HRV features.

Metric Unit Description
Time domain features

MeanHR ms Mean heart Rate
MaxHR ms Max heart rate
MinHR ms Min heart rate
STDHR ms Standard deviation (STD) of heart rate
MeanRR ms Mean of RR-intervals

MedianRR ms Median Absolute values of the successive differences
between the RR-intervals

RangeRR ms Difference between the Max and Min RR-interval
SDRR ms STD of RR-intervals
SDSD STD of differences between adjacent RR-intervals
RMSSD ms Root mean square successive RR-interval differences

CVSD % Coefficient of variation of successive differences
equal to the RMSSD divided by MedianRR

CVRR % Coefficient of variation equal to the ratio of SDRR
divided by MeanRR

HTI Integral of the density distribution divided by the
maximum of the density distribution

Frequency domain features
LF ms2 Absolute power(AP) of low-frequency(.04 to .15Hz)
HF ms2 AP of high-frequency (.15 to .40 Hz)
VLF ms2 AP of very-low-frequency (.003 to .04 Hz)
LF/HF ms2 Ratio of LF-to-HF power
TotalPower % Total power density spectral
LFNU nu Normalized LF power
HFNU nu Normalized HF power

Non linear domain features
SD1 ms Poincaré plot STD perpendicular the line of identity
SD2 ms Poincaré plot STD along the line of identity
SD2/SD1 % Ratio between SD2 and SD1
CSI Cardiac Sympathetic Index
CVI Cadiac Vagal Index
MCVI Modified CVI
SampEn Sample entropy of the data

The time indices include statistical measures such as MeanRR,
SDNN, RMSSD, CVNNI, MaxHR, as well as geometric mea-
sures such as HTI, (see Table I). According to the literature,
these metrics are often employed between 1 and 5-min epochs.
Some of these metrics are calculated based on UST recordings.

B. Frequency features

Using Fast Fourier Transformation (FFT) or autoregres-
sive (AR) modeling, we may separate HRV into ultra-low-
frequency (ULF), very-low-frequency (VLF), low-frequency
(LF), and high-frequency (HF) bands. According to the lit-
erature, frequency characteristics must be calculated using a
sample of 1 to 5-min. Besides, among these metrics (per Ta-
ble I) can be used in UST recording epochs without providing
any loss information [12].

C. Non linear features

Non-linear features allow us to assess a time series’ un-
predictability. The most commonly used non-linear features
are the Poincare plot and Cardiac Sympathetic Index (CSI)&
Cadiac Vagal Index (CVI), which may be measured on ST
and UST recordings [12]. A common nonlinear metric for
assessing the complexity of any time series is sample entropy
or SampEn. This metric is used in HRV analysis to determine
the rate of entropy in the ST [12].
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III. MATERIALS AND METHODS

This section describes the participants criteria, the experi-
mental paradigm, physiological measurement, signal process-
ing, feature extraction, feature selection, and classification.
Figure 1 illustrates the pipeline of the proposed MCI detection
method.

Fig. 1: Pipeline of the proposed MCI detection method.

A. Participants

Experiments were conducted in 2021 at the Otto von
Guericke University in Magdeburg, Germany. A total of 24
participants—13 MCI patients and 11 healthy controls (HC)—
were involved in the research. A qualified neurologist identi-
fied the individuals as having MCI. Subject ages ranged from
65 to 85. There are hardly any age, gender, or educational
disparities between the MCI and HC groups. The demographic
details of the participants are shown in Table II.

TABLE II: Demographic information of all subjects.

Characteristic HC MCI
Ages (years) 72±6 72.75±6

Gender (M/F) 1/10 8/5
Education (years) 14.85±1.63 14.25±1.66

M: Male and F: Female.

B. Experimental paradigm

All participants underwent the following assessments: (i) a
clinical evaluation; (ii) socioeconomic assessment question-
naires; and (iii) neurophysiological and neuropsychologi-
cal assessments using HRV and EEG modalities, including
resting, cognitive tasks using (i) Neurotrack, which includes
the following cognitive domains: attention, processing speed,
memory, associative learning, inhibition, and executive func-
tion and (ii) the Consortium to Establish a Registry for AD+
(CERAD+) [15] which includes the following cognitive do-
mains: visual perception, learning ability, memory, language,
in addition to executive function, and attention tests, as well as
a postural task using (iii) NeuroCom® Smart Balance Master
which was used to measure postural balance, detect gait issues,
and assess fall risk across the board in seniors. The task
includes a dynamic force plate and a visual surround that can
be moved independently, as well as an overhead connection
for a safety harness strap, and a computer with software.
The EEG and HRV data are gathered at the beginning of the
experiment when the subjects are at 5-min rest. The following

20 to 30-min are spent by participants utilizing the Neurotrack
test, followed by a 5-min rest. After that, participants complete
20 to 30-min of CERAD+ assessments before taking a 5-
min rest. Finally, participants complete 10 to 15-min of the
Balance Master task. In this work, we focus only on HRV
recording while subjects do the rest, Neurotrack, CERAD-Plus
and balance Master.

C. Data Measurement
HRV signals were recorded with a Polar H10 wearable

device. These signals were sampled at a frequency of 10Hz.
The flow of the experiment is shown in Figure 2. The recorded
signals were separated into six segments: Rest1 (5-min),
Neurotrack (15 to 20-min), Rest2 (5-min), Cerad+ (20 to 30-
min), Rest3 (5-min), and Balance Master (15-min). The time
for Rests 1, 2, and 3 were merged to create a longer segment of
(15-min) for the same assessment. We extract the RR interval
from the raw HR signals as follows: RR interval (sec) =
60/HR [16]. Quantitative data analysis for each HRV recording
was done at 1-min intervals (i.e., window time) during Rests,
Neurotrack, CERAD+, and Balance Master tasks.

Fig. 2: Experiment flow.

D. Feature Extraction and Selection
The used 27 characteristics are summarized in Table I.

Using the features derived from time, frequency, and nonlinear
spaces, is expected to help retrieving high separability between
two classes (i.e., Healthy people and people at MCI). However,
some redundancies may be involved in the retained feature
vectors. Moreover, the computational time necessary to fit
high-dimensional classifiers may also increase. The models
generalization capacity may also decrease. This highlights the
significance of choosing the best discriminative features when
building classifiers. A univariate feature selection (FS) method
based on mutual information (MI) is used in the feature space
to find the most discriminant features for classification. This
method is a well-known pertinent criterion for choosing feature
subsets from the input dataset. In practice, the MI feature
selection method was applied to find key aspects of a clas-
sification challenge. In this regard, we have computed the MI
between our extracted HRV feature and the class label in our
dataset based on the entropy estimation technique. Following
that, we sort these features according to their MI rankings.
Higher MI levels reflect a stronger link between the feature
and the target variable, implying that the feature contains more
discriminative information. Finally, we choose how many top-
ranked features we want to keep for the classification step.

E. Machine Learning Analysis
For classification tasks, there are several supervised ML

techniques. However, aggregation of many classifiers (en-
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semble learning) is also an efficient strategy that has been
considered in many studies [17]. Building an ensemble model
may be done in five different ways including (i) Bagging,
where the same kind of classifiers are employed and vote to
determine the result, (ii) Boosting where a succession of classi-
fiers is used, so that the performance of one model influences
the performance of the next, (iii) stacking, where different
models are mixed to provide a more accurate prediction by
”stacking” individual predictions, (v) Voting Classifier, which
incorporates many classifiers and bases its conclusion on votes,
and (vi) Averaging, where predictions of various models are
included and averaged. In this work, different ML models
are used: k-nearest neighbors (KNN) [18], Decision Tree
(DT) [19], Random Forest (RF) [20], Extra Trees (ExT) [21],
Gradient Boosting (GB) [22], XGBoost (XGB) [23] and
Voting classifier (Vhard) [24].

IV. EXPERIMENTAL VALIDATION

A. Evaluation metrics

The model’s classification performance is first assessed
using the confusion matrix [25]. As shown in Table III, the
matrix’s rows and columns each correspond to occurrences of
the actual class and the predicted class, respectively.

TABLE III: An example of a two-classes (MCI and HC)
confusion matrix.

Actual
Predicted MCI HC

MCI True Positives (TP) False Positives (FP)
HC False Negatives (FN) True Negatives (TN)

where True Positive (TP) denotes predictions of MCI as MCI,
False Positive (FP) denotes predictions of HC as MCI, False
Negative (FN) denotes predictions of MCI as HC, and True
Negative (TN) denotes predictions of HC as HC. These metrics
are evaluated, leading to accuracy, precision, recall and F1-
scores.

• Accuracy (ACC): proportion of correct predictions to the
total predictions given by:

ACC = (TP + TN)/(TP + TN + FP + FN). (1)

• Precision (PRE): proportion of predicted positive cases
that were correct, defined as:

PRE = TP/(TP + FP ). (2)

• Recall (REC) also known as sensitivity: proportion of true
positives to the total positives, defined as:

REC = TP/(TP + FN). (3)

• F1-score (F1s): combines the precision and recall scores
to count the number of times a model correctly predicted
the whole dataset, given by:

F1s = (2× PRE ×REC)/(PRE +REC). (4)

Furthermore, to assess the effectiveness of the ML models and
avoid over-fitting, cross-validation (CV) with K-Fold [26] was
performed. The data was split into 10 separate folds. In each
fold, 90% of the data were utilized for training and 10% for
testing. All proposed ML models are trained, and performance
metrics are shown per fold for each split of the data. This
guarantees that all data is used to train and test the model. It
is averaged over all folds for assessment reasons.

B. MCI detection results

To identify MCI patients, six supervised ML algorithms
were employed to evaluate the performance of cognitive and
postural activities. Our data was segmented, 10-fold CV was
performed, separate models were generated and evaluated, and
the higher-performing models were then integrated using the
voting ensemble approach. The present section introduces the
study’s key findings, including selected features from Baseline,
Neurotrack, CERAD+, and Balance Master tasks, as well as
the results of the individual and ensemble models of the HRV
throughout each task. The results are then compared to other
recent works that have been documented in the literature.

1) Selected Features: The effectiveness of learning ap-
proaches is increased by choosing relevant characteristics for
ML models. The most crucial features for each specific record-
ing were obtained using the MI feature selection method.
Table IV illustrates the 10 most important features for each
recording task. We can see that some features as MinHR,
MaxHR, MeanHR, MediamRR, MeanRR and CVSD were
shared by the different used tasks. Those features are outlined
in bold font in Table IV. It indicated that a collection of
features may have a high likelihood of accurately predicting
the MCI vs HC classification problem’s solution.

TABLE IV: 10 best selected features for each task.

Task Selected features
Baseline MinHR, MaxHR, MeanHR, VLF, RangeRR,

CVRR, MedianRR, meanRR, CVI, CVSD
Neurotrack MedianRR, MinHR, MeanHR, MaxHR,

MeanRR, VLF, HTI, CVSD, TotalPower, sampEn
Cerad+ MinHR, MeanRR, MeanHR, MedianRR,

MaxHR, RangeRR, HTI, CVRR, MCVI,CVSD
Balance Master VLF, MeanHR, MeanRR, maxHR, MedianRR,

TotalPower, CVSD, HF, RangeRR, minHR

2) Cross-validation results of ML-based classifiers: The
effectiveness of the built-in ML models was assessed using 10-
fold CV to avoid over-fitting. The MCI vs HC categorization
was compared using both all features and just the selected
features for each task. In terms of average accuracy, Table V
illustrates the 10-fold CV classification performance for the
six ML models for each task with and without features
selection. According to classification without the FS method,
the boosting classifiers, including GB and XGB, offer the
maximum level of accuracy for the proposed cognitive and
postural tasks. Furthermore, the balance Master task has the
best classifier’s highest percentage at 78.93% by using the GB
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model. According to classification involving a feature selection
step, it can be noticed that the classification accuracy increases
for all ML models. Furthermore, it should be mentioned that
the GB, XGB, and ExT classifiers outperform all the other
models, with the maximum average accuracy obtained in the
classification by GB being 81.40% during the Balance Master
task. Further, we discovered that the chosen characteristics
were quite effective in classifying the desired value. However,
the integration of time and frequency domain information with
the use of nonlinear metrics might potentially increase the
accuracy of HRV MCI classification. Based on the findings
of the 10-fold CV of ML classifiers with the feature selection
method, we propose a voting classifier approach to increase
accuracy. The voting classifier strategy incorporates the ML
algorithms RF, ExT, GB, and XGB, which deliver the highest
accuracy rates in comparison to other ML algorithms. These
results are presented in the following subsection.

TABLE V: 10-fold CV accuracy results of ML classifiers with
and without feature selection (FS).

KNN DT RF ExT GB XGB
Accuracy (%)

Baseline without FS 59.38 60.97 68.55 69.08 67.73 68.01
with FS 66.33 62.90 69.08 69.73 68.75 69.07

Neurotrack without FS 66.6 68.15 74.05 73.12 73.33 74.98
with FS 71.88 70.18 75.28 77.66 74.15 75.84

CERAD+ without FS 64.86 67.25 69.79 69.96 70.92 70.04
with FS 65.49 69.31 70.26 68.99 71.85 70.91

Balance Master without FS 56.65 75.7 75.28 76.96 78.93 75.3
with FS 77.35 77.73 80.98 78.13 81.40 78.16

3) Final classifier: Our suggested ensemble learning mod-
els included four ML models: RF, ExT, GB, and XGB. A
hard voting ensemble classifier for early MCI detection is
presented in this study. The suggested voting model’s clas-
sification results are compared with those of the other four
classification models. However, the initial dataset was split
into two sets for each experiment, with training including 80%
of the subjects, testing comprising 20%. Table VI illustrates
the classification performance results for MCI vs. HC classi-
fication using the HRV signal during various tasks. We can
notice that all ML models showed the greatest similarity in
classification scores when postural and cognitive tasks were
compared to the resting state. In particular, the proposed voting
method achieved the highest classification accuracy of 86%,
82.07% and 78.57% during respectively the Balance Master,
Neurotrack, and Cerad+ tasks. Using a number of evaluation
metrics for cognitive and postural activities, the suggested
Vhard model performs better than the individual models.

4) Comparison: In [7], the authors developed an logistic
regression (LR) model to distinguish between HC and MCI
participants during cognitive task. The features used in this
work are SDRR and RMSSD from the time domain and HF
from the frequency domain. The accuracy obtained by this
work is 76.5%. We applied this technique to our HRV data, and

TABLE VI: Performance Metrics.

task Metrics RF ExT GB XGB Vhard

Baseline Accuracy (%) 70.66 66.66 69.33 77.33 72
Precision (%) 69.91 65.46 68.31 76.75 71.16
Recall (%) 70.23 64.91 67.66 77.34 70.41
F1-score (%) 70.02 65.07 67.87 76.92 70.66

Neurotrack Accuracy (%) 77.35 77.35 79.24 80.18 82.07
Precision (%) 78.32 77.75 79.43 81.37 84.47
Recall (%) 74.30 74.67 77 77.42 79.01
F1-score (%) 75.08 75.38 77.68 78.33 80.15

Cerad+ Accuracy (%) 74.60 68.25 76.98 78.57 78.57
Precision (%) 73.92 67.5 76.53 78.32 78.17
Recall (%) 74.37 67.82 77.26 79.18 77.18
F1-score (%) 74.07 67.59 76.65 78.34 77.54

Balance Master Accuracy (%) 84 86 80 76 86
Precision (%) 84 85.89 79.87 76.02 86.66
Recall (%) 84.21 86.07 79.87 75.52 85.42
F1-score (%) 83.97 85.94 79.87 75.64 85.72

for the prediction challenge, we employed the proposed Vhard
approach. According to [27], two ML algorithms, including
gradient boosting decision tree (GBDT) and XGBoost, were
used to classify HC and MCI participants based on HRV
signals. MeanHR, MeanRR, RMSSD, LF, HF, and LF/HF
are the most relevant HRV characteristics employed in this
work. The highest F1 values for both GBDT and XGBoost
are, respectively, 84.04% and 78.02%. Table VII displays the
accuracy values of the testing set using the competing method.
Ten of the 27 features are only applied with the proposed
technique. As a result, the findings in this table are consistent
with the above-mentioned better performance even with a
subset of features.

TABLE VII: Comparison of accuracy with recent related work.

Method Baseline Neurotrack Cerad+ Balance Master
Alharbi et al. [7] 64% 64.28% 55.66% 58%

Liu et al. [27] 65.33% 71.42% 73.58% 78%

Pro. Method 72% 82.07% 78.57% 86%

Based on the above findings, we may conclude that using
cognitive and postural tasks yields better outcomes than the
baseline to detect MCI using HRV signals. On the other
hand, the proposed cognitive and postural activities may be
added into HRV recording, to determine MCI. This finding
warrants further investigation into developing cognitive and
postural tasks for MCI. Furthermore, these findings illustrate
the efficiency of the MI feature selection technique employed
in our suggested MCI detection method in comparison to other
current methods.

V. DISCUSSION AND CONCLUSION

This study aimed to compare individuals with MCI to
healthy older adults to assess the effects of cognitive and
postural activities. Additionally, our research aimed to explore
the potential of a wearable Polar H10 device recording for
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assessing and distinguishing between MCI and HC patients
based on HRV. In the current study, we investigated the use of
HRV to extract potential physiological biomarker for identify-
ing subjects who are more likely to develop MCI. We extracted
then HRV characteristics from various domains and identified
the optimal combination of features before selecting the best
ML algorithms for MCI identification. We found that time
features, as well as some frequency and nonlinear features,
were the most significant risk factors for MCI identification.
After that, a classification model was created using various
ML algorithms, including KNN, DT, and LR, GB, ExT, and
XGB. Classification tests were conducted using both whole
and selected feature sets. The experimental findings show that
by using a FS approach, we can properly identify MCI with
a limited set of characteristics. Moreover, the top ML models
with the highest accuracy rates are combined into a voting
ensemble classifier model, which allowed to increase accuracy
rate. In future work, we will attempt to increase prediction
accuracy using deep learning (DL) approaches to find the
most practical model for MCI detection. Furthermore, we will
subdivide each task (i.e., Cerad+, Neurotrack, and Balance
Master) into its sub-tests to avoid those that might decrease
the accuracy rate as well as to provide an ultra-short term
recording for MCI detection. We will also attempt to employ
a variety of FS techniques in search of HRV feature subsets
that accurately predict MCI.
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