
A fully automatic Bayesian model for adaptive
activation functions in artificial neural networks

Mohamed Fakhfakh1 and Lotfi Chaari2

1 Toulouse INP, IRIT, University of Toulouse, France
mohamed.fakhfakh@toulouse-inp.fr

2 Toulouse INP, IRIT, University of Toulouse, France
lotfi.chaari@toulouse-inp.fr

Abstract—There is a significant focus in deep neural networks
on finding activation functions that can enhance network per-
formance. Scientists are also interested in developing flexible
activation functions that can adapt during training to avoid
overfitting and provide reliable parameter learning.
This paper presents a Bayesian algorithm that employs Markov
Chain Monte Carlo (MCMC) to estimate activation function pa-
rameters and model weights. This algorithm accelerates conver-
gence through effective sampling and evaluates its effectiveness
on two datasets, achieving high accuracy with low complexity.

Index Terms— M CMC, Deep Learning, Trainable activation
functions, neural networks, Optimization

I. INTRODUCTION

Over the past two decades, Convolutional Neural Networks
(CNNs) [1, 2] have gained popularity due to their ability to
reduce complex and high-dimensional input data into easily
understandable low-dimensional concepts. CNNs consist of
hierarchical layers, where each layer is built on the features
of the layer below, resulting in increasing data abstraction
with each layer. The activation function plays a vital role in
discovering meaningful features and allowing for nonlinearity,
which ultimately improves precision by providing more accu-
rate outcomes. The activation function operates by comparing
the input value to a threshold value. If the input value is greater
than the threshold value, the neuron is activated, and otherwise,
it is disabled.
Despite years of research, the effectiveness of neural networks
remains an ongoing area of study. One of the most significant
challenges is identifying the optimal activation function, with
various functions having been suggested. These functions can
be classified into three categories: fixed-shape, trainable, and
trainable non-standard neuron activation functions, according
to [3].
Bayesian methods have seen increasing use in various fields
due to their ability to integrate prior knowledge into models
and parameter probabilities. Recent developments in Markov
Chain Monte Carlo (MCMC) methods [4, 5] have made it
easier to apply Bayesian analyses to complex and multidimen-
sional data, as mentioned in [6]. Our previous work showed
that utilizing a Bayesian formulation resulted in more efficient
resolution of the optimization problem related to the use of
CNNs than traditional gradient-based methods, according to
[7].
In this study, we introduce a novel approach based on Markov

Chain Monte Carlo (MCMC) to estimate both the parameters
of a trainable activation function and the weights of a deep
model simultaneously. This approach builds upon our previous
work presented in [8], where we utilized non-smooth Hamil-
tonian methods to fit sparse artificial neural networks.
The proposed optimization procedure in [8] offers several
key advantages. Firstly, it achieve efficient and rapid sam-
pling procedures, even when dealing with non-differentiable
energy functions that often arise from the utilization of sparse
regularization functions. Additionally, unlike gradient-based
techniques, the method guarantees convergence towards the
global minimum of the defined cost function.
The rest of this paper is organized as follows. In Section II,
we present the problem statement. The adopted hierarchical
Bayesian model is detailed in Section III. The proposed
Bayesian inference scheme is developed in Section IV and
validated in Section V. Finally, the conclusion and future work
are drawn in Section VI.

II. PROBLEM FORMULATION

The activation function plays a crucial role in neural net-
works and can take various forms, including commonly used
functions such as sigmoid [9] and ReLU [10], as well as
trainable functions like FReLU [11] and MeLU [12], where
the parameters are optimized using gradient descent. Alterna-
tive methods like the Maxout network [13] have also been
explored.
However, these approaches have their limitations. They can
be computationally expensive and suffer from issues like
vanishing gradients, which can lead to getting stuck in local
minima and lower performance [14]. Furthermore, there are
unresolved concerns regarding the flexibility of these functions
and parameter estimation.
In this paper, we propose a modification to the MeLU activa-
tion function [12] and incorporate parameter estimation into
a global Bayesian optimization framework. In this paper, we
propose a modification to the MeLU activation function [12]
and incorporate parameter estimation into a global Bayesian
optimization framework. The MeLU activation function, with
its Mexican hat shape resembling a bell but with a peak
in the center, offers an advantage for smaller input values.
Compared to other activation functions, MeLU provides a
stronger response for these small values, effectively avoiding
the problem of gradient vanishing. Our objective is to address

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

no
va

tio
ns

 in
 In

te
lli

ge
nt

 S
ys

te
m

s a
nd

 A
pp

lic
at

io
ns

 (I
N

IS
TA

) |
 9

79
-8

-3
50

3-
38

90
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
IS

TA
59

06
5.

20
23

.1
03

10
47

1

Authorized licensed use limited to: TOULOUSE INP. Downloaded on February 25,2024 at 13:20:40 UTC from IEEE Xplore. Restrictions apply.

the limitations of standard activation functions and enhance the
flexibility and performance of our model. By incorporating
trainable activation functions, we enable dynamic learning
and optimization of activation function parameters alongside
the network weights, thereby improving representation and
modeling capabilities.
Moreover, The combination of multiple trainable activation
functions provides an opportunity to leverage the strengths of
different functions and exploit their complementary properties.
Each activation function may better poerform in modeling
specific types of data or capturing certain types of non-
linearities. By combining them, our aim is to enhance the
overall modeling capacity of the network and achieve better
performance across various tasks. Furthermore, this combina-
tion helps address the issue of vanishing gradients, which is a
common challenge in deep neural networks.
The motivation behind the development of the Modified Mexi-
can ReLU (MMeLU) activation function is rooted in its ability
to address the limitations of the MeLU method while providing
enhanced performance and reduced computational demands.
One drawback of the MeLU method is its speed and memory
requirements, primarily due to the utilization of numerous
parameters for estimation. In contrast, MMeLU requires fewer
parameters to estimate and employs a Bayesian framework,
distinguishing it from other activation functions.
Let us define the function :

fγ,b(x) = max(b− |x− γ|, 0) (1)

where x is the input of a neural network layer and γ, b
are real numbers. This function is null when |x − γ| > b. In
addition, it increases with a derivative of 1 between γ− b and
γ and then decreases utilizing a derivative of minus 1 between
γ and γ + b. When plotted, this function has the shape of a
Mexican hat.
Using fγ,b, the proposed activation function MMeLU can be
defined as

MMeLU(x) = ReLU(x) + c fγ,b(x) (2)

where c is a real number. c, b, and γ are the parameters to
be estimated.

As indicated above, this contribution is an extension of
our recent work [8] which introduced a new method for
sparse optimization of deep neural network weights based
on the non-smooth Hamiltonian Monte Carlo algorithm [15].
Compared to the MeLU function, the novelty behind the
definition of our MMeLU function resides in a combination
of the popular activation function ReLU with the Mexican hat
function, which is estimated only once. The novelty of this
study is that it suggests a new trainable activation function
and adjusts all the parameters of the artificial neural network
in a Bayesian framework. Furthermore, our method can be
applied to both regression and classification problems. In what
follows, a classification problem will be adopted to formulate
the proposed model.

Let us denote the ground truth by y, and the estimated label
by the proposed activation function MMeLU(x, W) as a non-
linear function of the input x and weights vector W ∈ RN .
The weight vector can be determined during the training phase
using a generic distance D (euclidean, Minkowski,...) based
on the error applied to the M input data.

Ŵ = argmin
W

L(W)

= argmin
W

M∑
m=1

D (MMeLU(xm;W)− ym) +

L∑
l=1

λ∥W l∥1,

(3)

where λ is a regularization parameter to be estimated
that balances the solution between the data fidelity and ℓ1
regularization terms.

III. HIERARCHICAL BAYESIAN MODEL

As mentioned earlier, the estimation of trainable activation
function parameters is formulated in a Bayesian framework. In
this approach, all parameters and hyperparameters are consid-
ered as realisations of random variables following probability
distributions. Specifically, a likelihood distribution is defined
to model the relationship between the target weights, activation
function parameters, and the data, while a prior distribution is
used to represent prior knowledge about the target weights and
activation function parameters.

A. Likelihood

According to the principle of minimizing the error between
the reference vector y (label or continuous values) and its
estimate ŷ, we define the likelihood law as

f(y, x;W, c, γ, b) ∝ ×
M∏

m=1

exp [−D(MMeLU(xm;W, c, γ, b)− ym)] . (4)

where x = {x1, . . . , xM}, and y = {y1, . . . , yM}. It is
important to mention that when the Euclidean distance is
employed as a measure for D (distance), the corresponding
likelihood function is essentially a Gaussian distribution.

B. Priors

In our model, the unknown parameters are gathered in the
unknown vector θ = {W , c, γ, b, λ}.

Prior for W :
As regards the prior knowledge of the weights vector W , we
propose to use a Laplace distribution in order to promote the
sparsity of the neural network :

f(W ;λ) ∝
L∏

l=1

Kl∏
k=1

[
1

λ
exp

(
−|W l

k|
λ

)]
, (5)

where Kl is the number of weights of the l layer of the
network, λ is a parameter to be estimated.

2
Authorized licensed use limited to: TOULOUSE INP. Downloaded on February 25,2024 at 13:20:40 UTC from IEEE Xplore. Restrictions apply.

Prior for λ :
Since λ is a positive value real positives, an inverse-gamma
(IG) distribution has been used :

f(λ; δ, µ) = IG(λ; δ, µ) ∝ (λ)−1−δ exp
(
−µ

λ

)
(6)

where δ = µ = 10−3.

Prior for c :
Regarding the parameter c, we consider a uniform distribution
over the interval [0, 1], denoted as

c ∼ U[0,1](c). (7)

Prior for γ :
Since γ is a real value, a Gaussian distribution is used as
follows

f(γ;σ2) =
1√
2πσ2

exp

(
− γ2

2σ2

)
, (8)

where σ2 is a hyperparameter to be estimated.

Priori for b:
Since b is a positive real number, an exponential distribution
is used as follows:

f(b;λb) ∝

 1
λb

exp

(
− b

λb

)
; if; b ≥ 0

0; otherwise.
(9)

where λb is a hyperparameter to be estimated. This prior
penalizes large values of b. It is worth noting that this prior
helps promote low values for b, thereby encouraging sparsity
in the neural network by increasing the number of deactivated
neurons.

C. Hyperpriors

Since λb and σ2 are positive real numbers, an inverse
gamma (IG) distribution was used as a hyper-a priori:

f(λb; δ, µ) = IG(λb; δ, µ) ∝ (λb)
−1−δ exp

(
− µ

λb

)
, (10)

and

f(σ2; δ, µ) = IG(σ2; δ, µ) ∝ (σ2)−1−δ exp
(
− µ

σ2

)
, (11)

where δ and µ are positive parameters that were fixed at
10−3.

IV. BAYESIAN INFERENCE SCHEME

By adopting a Maximum a Posteriori (MAP) approach, we
first need to express the posterior distribution. Let Φe = {σ2,
λb} be the hyperparameters to be estimated, and Φm = {δ,
µ} be the hyperparameters. Using the likelihood, the prior
distributions, and the defined hyperpriors, we can write the
posterior distribution as:

f(θ,Φe; y,Φm) ∝ f(y; θ)f(θ; Φe)f(Φe; Φm)

(12)

which can be reformulated in a detailed version as

f(θ,Φe; y, x,Φm) ∝
M∏

m=1

exp [−D(MMeLU(xm;W, c, γ, b)− ym)]×

L∏
l=1

Kl∏
k=1

[
1

λ
exp

(
−|W l

k|
λ

)]
× (λ)−1−δ exp

(
−µ

λ

)
×

exp

(
− γ2

2σ2

)
× 1

λb
exp

(
− b

λb

)
1R+(b)× 1[0,1](c)×

(λb)
−1−δ exp

(
− µ

λb

)
× (σ2)−1−δ exp

(
− µ

σ2

)
.

(13)

The conditional posterior related to W writes

f(W ; c, γ, b, λ) ∝ exp

[
−

L∑
l=1

Kl∑
k=1

|W l
k|

λ

]
×

exp

[
−

M∑
m=1

(D(MMeLU(xm;W, c, γ, b)− ym))

]
. (14)

The conditional distribution for the parameter c is given by:

f(c;W, b, γ) ∝ 1[0,1](c)×

exp

[
−

M∑
m=1

(D(MMeLU(xm;W, c, γ, b)− ym))

]
. (15)

For the parameter b, the conditional distribution is given by:

f(b;W, c, γ, λb) ∝ exp

(
− b

λb

)
×

exp

[
−

M∑
m=1

(D(MMeLU(xm;W, c, γ, b)− ym))

]
. (16)

As regards γ, the conditional distribution writes:

f(γ;W, b, c, σ2) ∝ exp

(
− γ2

2σ2

)
×

exp

[
−

M∑
m=1

(D(MMeLU(xm;W, c, γ, b)− ym))

]
. (17)

3
Authorized licensed use limited to: TOULOUSE INP. Downloaded on February 25,2024 at 13:20:40 UTC from IEEE Xplore. Restrictions apply.

The conditional distribution for the parameter λ is given by:

f(λ; δ, µ) ∝ λ−1−(δ+K) exp
(
−µ

λ

)
∝ IG(δ +K,µ). (18)

For the hyperparameter vector Φe, it is necessary to calculate
the conditional distributions from which it is possible to
sample based on the likelihood and adopted priors.

The conditional distribution for the hyperparameter λb is
given by:

f(λb; b, µ, δ) ∝ λ−2−δ
b exp

(
−b+ µ

λb

)
∝ IG(δ + 1, b+ µ). (19)

The conditional distribution for the hyperparameter σ2 is
given by:

f(σ2;µ, γ, δ) ∝ (σ2)−1−δ exp

(
−γ2 + 2µ

2σ2

)
∝ IG(δ, γ + 2µ). (20)

The sampling scheme is summarized in Algorithm 1, where
the model weights W and the parameters of the proposed
MMeLU function are sampled, in addition to all hyperparam-
eters which need to be estimated.

Algorithm 1: Gibbs sampler for the proposed method.
Fix the hyperparameters Φm ;
for r = 1, . . . , S do

* Sample c according to f(c;W, b, γ) ;
* Sample γ according to f(γ;W, b, c, σ2) ;
* Sample b according to f(b;W, c, γ, λb) ;
* Sample σ2 according to f(σ2;µ, γ, δ) ;
* Sample λb according to f(λb; b, µ, δ) ;
* Sample λ according to f(λ; δ, µ) ;
* Sample W as described in [8] ;

end

In Algorithm 1, S denotes the number of MCMC sampling
iterations. After the burn-in period, the sampled coefficients
are used to calculate the estimators MMSE (Minimum...) Ŵ ,
ĉ, b̂, γ̂, in addition to σ̂2, λ̂ and λ̂b.

V. EXPERIMENTAL VALIDATION

To validate our proposed approach, we conducted experi-
ments on three different datasets: one regression dataset and
two image classification datasets. The first dataset involved us-
ing the California Housing dataset [16], which is a commonly
used dataset for regression tasks. It provides information
about housing in California with the aim of predicting the
median value of houses in different neighborhoods based
on various features. The second dataset consisted of CT
(Computed Tomography) images for COVID-19 classification,
aimed at detecting whether a patient is positive for COVID-19
based on a CT scan. The third dataset utilized the CIFAR-
10 dataset, which is a widely used benchmark dataset for

image classification tasks. It contains images belonging to 10
different classes.
These experiments were designed to assess the performance
of our proposed approach in both regression and image clas-
sification tasks, demonstrating its effectiveness and versatility
across different domains.
We compared our method to five widely used activation
functions in the literature. We employed the ADAM optimiza-
tion technique with a learning rate of 10−3. The activation
functions we compared with were ReLU [10], FReLU [11],
ELU [10], PReLU [17], and MeLU [12].
Our convolutional neural network (CNN) architecture con-
sisted of nine convolutional layers, specifically 3XConv-32,
3XConv-64, and 3XConv-128. Additionally, we incorporated
two fully connected layers, FC-128 and FC-64x. Each con-
volutional layer utilized 3 × 3 kernel filters, and we applied
2× 2 max-pooling layers with a stride size of 1. To enhance
the model’s performance, we implemented two regularization
techniques, namely Batch Normalization, and Dropout. The
dropout rate was determined through cross-validation and set
to p = 0.35.
For coding purposes, we utilized the Python programming
language along with the Keras and TensorFlow libraries. The
experiments were conducted on a system with an Intel(R)
Core(TM) i7-2720QM CPU 2.20GHZ architecture and 16 GB
of memory.

A. Experiment 1: Regression

This section focuses on a regression task that utilizes the
California Housing dataset, which consists of 20,640 instances.
The dataset includes 8 predictive numerical attributes and
a target variable. These attributes encompass various factors
such as the median income in the block group (MedInc), the
median house age in the block group (HouseAge), the average
number of rooms per household (AveRooms), the average
number of bedrooms per household (AveBedrms), the block
group population (Population), the average number of house-
hold members (AveOccup), the latitude of the block group
(Latitude), and the longitude of the block group (Longitude).

TABLE I
EXPERIMENT 1: REGRESSION RESULTS (ACTIVATION FUNCTIONS (ACT
FCTS), MEAN SQUARED ERROR WITH TRAIN SET (MSEtrain), MEAN

SQUARED ERROR WITH TEST SET (MSEtest).

Act. Fcts MSEtrain MSEtest

MMeLU 0.12 0.14
ReLU 0.13 0.26
ELU 0.19 0.25
PReLU 0.15 0.28
FReLU 0.13 0.27
MeLU 0.14 0.28

Table I presents the results of Experiment 1, which com-
pares different activation functions in the regression task. The
mean squared error (MSE) is used as an evaluation metric,
and the results are reported for the training set (MSEtrain)
and the test set (MSEtest).

4
Authorized licensed use limited to: TOULOUSE INP. Downloaded on February 25,2024 at 13:20:40 UTC from IEEE Xplore. Restrictions apply.

The proposed MMeLU activation function achieves the best
performance, outperforming all the competing activation func-
tions. It achieves a significantly lower MSEtest value of
0.14, which is half the value obtained by the other activation
functions. Moreover, the MSE value is more stable with
MMeLU between train and test, indicating better generaliza-
tion properties.
In contrast, the ReLU activation function shows a relatively
high MSEtest value of 0.26, indicating that it may not be
the most suitable choice for this regression task. Similarly, the
ELU, PReLU, FReLU, and MeLU activation functions also
exhibit higher MSEtest values compared to MMeLU.
These results highlight the importance of selecting an appro-
priate and flexible activation function for regression tasks. The
MMeLU activation function demonstrates promising perfor-
mance in accurately predicting the median house values in the
California Housing dataset.

B. Experiment 2 : COVID-19 classification using CT images

In this section, we evaluate the effectiveness of our approach
in classifying Covid-19 infections from other pneumonias in
CT data. The COVID-CT dataset consists of 349 Covid-19
positive CT images from 216 patients and 397 Covid-19
negative CT images, which is publicly available1. We split
the dataset into 566 training images and 180 test images, each
with a size of 230 × 230. This task is challenging due to
the complex nature of CT images and the similarity between
Covid-19 infections and other types of pneumonia.
Table II presents the accuracy, loss, sensitivity, specificity,
and computation time for the classification experiments. The
reported scores indicate that our proposed Bayesian method
outperforms all competing activation functions significantly.
The results also demonstrate that the computation time is
shorter with our proposed model. Additionally, even when
employing various regularization techniques, there are notable
drops in performance for all competing functions. This can
be attributed to the inherent difficulty of classifying CT scan
images due to their intricate content and the similarities
between images of Covid-19 infections and other types of
pneumonia.

TABLE II
EXPERIMENT 2: CT CLASSIFICATION RESULTS (ACTIVATION FUNCTIONS
(ACT FCTS), COMPUTATION TIME IN MINUTES, ACCURACY (ACC), LOSS,

SENSITIVITY (SENS) AND SPECIFICITY (SPEC)).

Act. Fcts Time Acc. Loss Sens. Spec.
MMeLU 61.92 0.91 0.21 0.87 0.87
ReLU 81 0.77 0.39 0.74 0.72
ELU 97 0.76 0.46 0.75 0.75
PReLU 119 0.70 0.76 0.68 0.67
FReLU 123 0.77 0.52 0.76 0.75
MeLU 146 0.80 0.38 0.80 0.80

Figure 1 visually represents the behavior of the algorithms
and demonstrates a significant improvement in accuracy ob-
served with most activation functions. When compared to

1https://www.kaggle.com/luisblanche/covidct

our proposed Bayesian approach, MMeLU, there are distinct
differences in the accuracy and loss curves for all competing
methods.
For instance, the LReLU function introduces a negative bias
that suppresses excessive activations. However, if the bias
value is inappropriate, it can result in underfitting. The ELU
function allows for negative activations, but its exponential
shape can cause activation values to explode for large values
of x. The Swish function accelerates learning convergence but
can lead to overfitting by being more sensitive to outliers.
Lastly, the FReLU function is capable of capturing complex
data patterns, but if the parameters are not well chosen, it can
suffer from overfitting.
These significant differences are reduced with our MMeLU
method, confirming its effectiveness and efficiency in chal-
lenging datasets.

C. Experiment 3 : CIFAR-10 image classification

In this section, we assess the performance of our approach
using the standard CIFAR-10 dataset. This dataset comprises
60,000 color images, each sized 32 × 32 pixels, divided into
10 classes. Out of these, 50,000 images are used for training,
while the remaining 10,000 images are used for testing.
The classification results for the CIFAR-10 dataset are
presented in Table III. The superior performance of MMeLU
can be attributed to its capability to capture more complex
and diverse features, resulting in lower loss rates and higher
accuracy. Moreover, MMeLU introduces a regularization
effect that encourages sparsity within the network, leading
to a more efficient model, as evident in Table III. This is
reflected in the significantly lower computation time of our
proposed method compared to other activation functions. As
a result, the model is faster to train and requires less memory.
The lower loss rate, higher accuracy, and sparsity nature of
our global optimization method make it an excellent choice
for real-world applications that require efficient and accurate
deep learning models.

TABLE III
EXPERIMENT 3: CIFAR-10 CLASSIFICATION RESULTS (ACTIVATION

FUNCTIONS (ACT FCTS), COMPUTATION TIME IN MINUTES, ACCURACY
(ACC), LOSS, SENSITIVITY (SENS) AND SPECIFICITY (SPEC)).

Act. Fcts Time Acc. Loss Sens. Spec.
MMeLU 332.5 0.93 0.20 0.90 0.88
ReLU 429 0.90 0.36 0.87 0.86
ELU 438 0.88 0.39 0.86 0.85
PReLU 466.8 0.84 0.47 0.81 0.79
FReLU 431.7 0.86 0.38 0.83 0.81
MeLU 485.6 0.90 0.34 0.88 0.87

VI. CONCLUSION

The present paper introduces a novel Bayesian approach
for enhancing the performance of deep neural networks with
trainable activation functions. The proposed method achieves
favorable classification results, high generalization properties,
and improved computational efficiency when compared to

5
Authorized licensed use limited to: TOULOUSE INP. Downloaded on February 25,2024 at 13:20:40 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

train loss ReLU
test loss ReLU
train accuracy ReLU
test accuracy ReLU

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0
train loss ELU
test loss ELU
train accuracy ELU
test accuracy ELU

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0

train loss FReLU
test loss FReLU
train accuracy FReLU
test accuracy FReLU

(a): ReLU (b): ELU (c): FReLU

0 50 100 150 200 250 300

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

train loss PReLU
test loss PReLU
train accuracy PReLU
test accuracy PReLU

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

train loss MeLU
test loss MeLU
train accuracy MeLU
test accuracy MeLU

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

1.0

train loss MMeLU
test loss MMeLU
train accuracy MMeLU
test accuracy MMeLU

(d): PReLU (e): MeLU (f): MMeLU

Fig. 1. Experiment 2: Train and test curves.

other activation functions and standard optimization methods.
Future studies will concentrate on parallelizing the algorithm
to enable GPU calculations and further reduce computational
time.

REFERENCES

[1] M. Fakhfakh, B. Bouaziz, F. Gargouri, and L. Chaari, “Prognet: Covid-
19 prognosis using recurrent and convolutional neural networks,” The
Open Medical Imaging Journal, vol. 12, no. 1, 2020.

[2] J. Giuxiang, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai, et al., “Recent advances in convolutional
neural networks,” Pattern recognition, vol. 77, pp. 354–377, 2018.

[3] A. Apicella, F. Donnarumma, F. Isgrò, and R. Prevete, “A survey on
modern trainable activation functions,” Neural Networks, vol. 138, pp.
14–32, 2021.

[4] C. Andrieu, A. Doucet, and R. Holenstein, “Particle markov chain monte
carlo methods,” Journal of the Royal Statistical Society: Series B, vol.
72, no. 3, pp. 269–342, 2010.

[5] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré, “Markov chain
monte carlo without likelihoods,” Proceedings of the National Academy
of Sciences, vol. 100, no. 26, pp. 15324–15328, 2003.

[6] L. Chaari, H. Batatia, N. Dobigeon, and J.-Y. Tourneret, “A hierarchical
sparsity-smoothness bayesian model for l0+l1+l2 regularization,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014, pp. 1901–1905.

[7] M. Fakhfakh, B. Bouaziz, F. Gargouri, and L. Chaari, “Bayesian
optimization using hamiltonian dynamics for sparse artificial neural
networks,” in 2022 IEEE 19th International Symposium on Biomedical
Imaging (ISBI). IEEE, 2022, pp. 1–4.

[8] M. Fakhfakh, L. Chaari, B. Bouaziz, and F. Gargouri, “Non-smooth
bayesian learning for artificial neural networks,” Journal of Ambient
Intelligence and Humanized Computing, pp. 1–24, 2022.

[9] A. C Marreiros, J. Daunizeau, S. J. Kiebel, and K. J. Friston, “Population
dynamics: variance and the sigmoid activation function,” Neuroimage,
vol. 42, no. 1, pp. 147–157, 2008.

[10] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization methods
from a machine learning perspective,” IEEE transactions on cybernetics,
vol. 50, no. 8, pp. 3668–3681, 2019.

[11] S. Qiu, X. Xu, and B. Cai, “Frelu: flexible rectified linear units for
improving convolutional neural networks,” in 2018 24th international
conference on pattern recognition (icpr). IEEE, 2018, pp. 1223–1228.

[12] G. Maguolo, L. Nanni, and S. Ghidoni, “Ensemble of convolutional
neural networks trained with different activation functions,” Expert
Systems with Applications, vol. 166, pp. 114048, 2021.

[13] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,
“Maxout networks,” in International conference on machine learning,
2013, pp. 1319–1327.

[14] X. Wang, Y. Qin, Y. Wang, S. Xiang, and H. Chen, “Reltanh: An activa-
tion function with vanishing gradient resistance for sae-based dnns and
its application to rotating machinery fault diagnosis,” Neurocomputing,
vol. 363, pp. 88–98, 2019.

[15] L. Chaari, J.-Y. Tourneret, C. Chaux, and H. Batatia, “A Hamiltonian
Monte Carlo method for non-smooth energy sampling,” IEEE Trans. on
Signal Process., vol. 64, no. 21, pp. 5585 – 5594, Jun. 2016.

[16] R. K. Pace and R. Barry, “Sparse spatial autoregressions,” Statistics &
Probability Letters, vol. 33, no. 3, pp. 291–297, 1997.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

6
Authorized licensed use limited to: TOULOUSE INP. Downloaded on February 25,2024 at 13:20:40 UTC from IEEE Xplore. Restrictions apply.

