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Abstract— Magnetic resonance spectroscopy imaging (MRSI)
is a powerful non-invasive tool for characterising markers of
biological processes. This technique extends conventional MRI
by providing an additional dimension of spectral information
describing the abnormal presence or concentration of metabo-
lites of interest. Unfortunately, in vivo MRSI suffers from
poor signal-to-noise ratio limiting its clinical use for treatment
purposes. This is due to the combination of a weak MR signal
and low metabolite concentrations, in addition to the acquisition
noise. We propose a new method that handles this challenge
by efficiently denoising MRSI signals without constraining the
spectral or spatial profiles. The proposed denoising approach
is based on wavelet transforms and exploits the sparsity of the
MRSI signals both in the spatial and frequency domains. A
fast proximal optimization algorithm is then used to recover
the optimal solution. Experiments on synthetic and real MRSI
data showed that the proposed scheme achieves superior noise
suppression (SNR increase up to 60%). In addition, this method
is computationally efficient and preserves data features better
than existing methods.

I. INTRODUCTION

MRSI is a non-invasive technique that has become a valuable

tool to characterize metabolic processes and neurological

disorders such as brain tumor [1]. It was initially developed

for examination of human brain tumours, and its use has been

extended for examination of prostate and breast cancers [2].

Its complementary use with MRI provides useful informa-

tion on tumour characteristics, progression and response to

treatment.

Single Voxel Spectroscopy (SVS) techniques identifying

abnormal levels of various metabolites have been used

for diagnosis purposes for many years and in a variety

of illnesses. More recently, much more interest has been

developed to Chemical Shift Imaging (CSI) techniques,

which allow the generation of “metabolic maps” showing

the variation in metabolite concentrations over a large vol-

ume [3]. Unfortunately, this spatial information comes at

the cost of a reduced signal-to-noise ratio (SNR), due to

a reduced scan time for each voxel. This makes accurate

quantification of metabolite signals extremely challenging.

Therefore, improving the SNR is a key factor in achieving

clinical utility for CSI techniques. Signal averaging is a

standard technique to improve SNR. However, this approach

is often not practical because of long acquisition times.

Another popular method is to apply apodizing filters but this
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often compromises the spectral resolution of the data [4].

Many of the algorithms dedicated to MRSI data processing

rely heavily on spectral constraints and struggle with very

noisy signals. These methods incorporate constraints on the

spectral profile, either by using explicit parametric models

or by assuming particular line-shape characteristics [5]–

[7]. Consequently, approaches described hereabove tend to

bias the interpretation of the measured signal towards the

prior assumptions. The limited ability of these models to

capture the spatial variations exhibited by in vivo scans,

especially in the context of lesions, make them ineffective in

practical applications. In addition, these methods are often

sensitive to several parameters. It is desirable then to have

a method able to suppress noise in MRSI signals in a non-

constrained way while preserving the spectral features. Since

there might be applications where prior information can

be reliably incorporated, such a method should also allow

natural extensions that preserve this possibility.

In this paper, we investigate the sparse regularization issue

to address the limitations mentioned above. We propose a

novel method for MRSI denoising, which accounts for signal

regularity across the spectral dimension without altering the

spectral resolution, but also across the spatial dimension. The

proposed approach relies on sparsity promoting priors using

wavelet transforms, a key signal/image tool that has been

successfully used in a wide spectrum of image processing

applications, especially in the biomedical field [8]–[10]. We

then use a fast optimization algorithm to deal with the convex

optimality criterion which is not differentiable. For doing so,

proximal algorithms have been investigated, a family of fast

convex optimization algorithms that have also been widely

used in signal/image processing [9], [11].

The remainder of this paper is organized as follows. Sec-

tion II formulates the MRSI denoising problem. The pro-

posed sparse regularization method is detailed in Section III.

Illustrations on synthetic and real data are presented in

Section IV. Finally, conclusions and perspectives are drawn

in Section V.

II. MRSI DENOISING

MRSI signals are not directly available, but only measured

through some physical laws relating the sought signal to the

measurements. Let S and Z be the target and observed MRSI

signals, respectively, corresponding to a 2D slice involving

N spectral points. Denoting the 2D spatial position by r,

S can be written as S = (sr)r∈R = (yf )1≤f≤N , where R

involves all spatial positions, the N×1 vector sr denotes the

spectrum at voxel r, and yf the 2D image of size Nr ×Nc



related to frequency f . The observation model is:

Z = S + n (1)

where n is an additive complex-valued Gaussian noise of

diagonal covariance matrix Σ which has to be estimated.

Existing methods recover S from Eq. (1) either by using

general schemes where the inherent spectro-spatial dimen-

sions are not explored, or by assuming restrictive models

that are not able to deal with the variability of MRSI in

vivo data. These are some of the drawbacks of the current

methods, like the widely used linear-shift invariant filters,

the standard wavelet shrinkage or the method presented

in [5]. The approach proposed in this paper estimates S from

Eq. (1) by adopting a sparse regularization scheme that is less

constrained than the previous approaches, is able to capture

the spatio-spectral nature of MRSI data and keeps open the

feasibility of incorporating prior knowledge into the model.

III. SPATIAL SPECTRAL MRSI DENOISING

A. Motivation

Quantification of MRSI signals is a challenging problem.

One of the key factors to achieve the clinical utility of MR

spectroscopy is the SNR improvement for this type of data.

Current MRSI denoising techniques rely heavily on spectral

constraints and thus are not able to describe the spatial

variations exhibited by in vivo data. The method presented

here is able to overcome these limitations by removing the

spurious spatio-spectral irregularities while preserving spatial

and spectral resolutions. In addition, unlike the existing

regularizations schemes, this method relies on an efficient

optimization algorithm and it is not subject to local optima.

B. Optimization criterion

At a given spectral frequency f , the 2D complex-valued

image yf of size Nr × Nc can be seen as an element of

the Euclidean space CK with K = Nr × Nc endowed

with the standard inner product 〈 · | · 〉 and norm ‖ · ‖. We

employ a dyadic 2D orthonormal wavelet decomposition

operator T over j1max resolution levels. The coefficient field

resulting from the wavelet decomposition of a target image

yf is defined as ζf =
(

ζf
a , (ζ

f
o,j)o∈O,1≤j≤j1

max

)

with o ∈

O = {0, 1}2 \ {(0, 0)}, ζf
a = (ζfa,k)1≤k≤Kjmax

and ζ
f
o,j =

(ζfo,j,k)1≤k≤Kj
where Kj = K2−2j is the number of wavelet

coefficients in a given subband at resolution j (by assuming

that Y1 and Y2 are multiples of 2jmax . Adopting such a

notation, the wavelet coefficients have been re-indexed so

that ζf
a denotes the approximation coefficient vector at the

resolution level jmax, while ζ
f
o,j denotes the detail coefficient

vector at the orientation o and resolution level j.

On the other hand, the spectrum sr of size N at spatial

position r can be seen as an element of the Euclidean

space C
N endowed with the standard inner product and

norm. We denote here by F the dyadic 1D orthonormal

wavelet decomposition operator over j2max resolution levels.

The coefficient field corresponding to the spectrum sr is

then denoted by ζr =
(

ζr

a, (ζ
r

d,j)1≤j≤j2
max

)

, where the

subscripts a and d denote approximation and detail subbands,

respectively.

In order to reduce the search space of S to solutions

having fewer irregularities both in the spatial and spectral

dimensions, we propose here to introduce two regularization

terms. The first one describes the 2D spatial prior knowledge

about the wavelet coefficients of the target solution. This first

regularization term is defined as:

g(S) =
N
∑

f=1

[

K
j1
max

∑

k=1

Φp
µa,αa

(

(Tyf )a,k

)

+
∑

o∈O

j1
max
∑

j=1

Kj
∑

k=1

Φp

µ
j
o,α

j
o

(

(Tyf )o,j,k

)]

(2)

where ∀ξ ∈ C, Φp
µ,α(ξ) = α|ξ − µ|pp, µj

o ∈ C, αj
o ∈ R+ and

p ≥ 1 (similarly µa and αa). Due to the shape parameter p,

this regularization term keeps a compromise between sparsity

(p ∼ 1) and smoothness (p ∼ 2) of the wavelet coefficients

of the 2D image yf . The second regularization term allows

reducing high spectral discontinuities (especially close to the

metabolite peaks) between adjacent frequency bands at a

voxel r. This regularization is made through the penalization

of the wavelet coefficients of the 1D spectra sr:

h(S) =
∑

r∈R

[

K
j2
max

∑

k=1

Φβ
ηa,λa

(

(Fsr)a,k

)

+

j2
max
∑

j=1

Kj
∑

k=1

Φβ

η
j

d
,λ

j

d

(

(Fsr)d,j,k

)]

(3)

where η
j
d ∈ C, λ

j
d ∈ R+ and β ≥ 1 (similarly for ηa and

λa).

Note that this king of ℓp regularization has already been

successfully used in sparse MRI reconstruction [12].

C. Optimization procedure

Based on the formulation above of the spatial and spectral

regularization terms (resp. g(S) and h(S)), and accounting

for the data fidelity term D(S) = ‖Z−S‖2Σ−1 , the resulting

criterion to be minimized can be written as follows:

J (S) = D(S) + g(S) + h(S). (4)

Note here that if for instance one wants to perform only

spectral regularization, the spectral regularization term can be

turned off by setting λ
j
d = λa = 0 in Eq. (3). Howeved, using

both regularizations allows eliminating at the same time high

spectral and spatial discontinuities.

Since J is convex, unicity of the target solution is guar-

anteed. However, J is not necessarily differentiable, which

makes impossible the use of gradient-based algorithms for

minimization. We therefore propose to perform the mini-

mization of J in Eq. (4) by using the concept of proximity

operators [13] which was found to be fruitful in a number

of recent works in convex optimization [9], [11].



1) Proximity operator of the data fidelity term:

According to standard rules about the calculation of proxim-

ity operators the proximity operator of the data fidelity term

D is given by:

proxDS =
(

Id + 2Σ−1
)−1(

S + 2Σ−1Z
)

. (5)

2) Proximity operator for the regularization terms:

Using the same rules as in Section III-C.1, the proximity

operator of Φp
µ,α for every ξ ∈ C is given by proxΦp

µ,α
ξ =

sign(ξ)η, where η = ηRe + ı ηIm is the unique solution in

C+ to η+pηp−1α = |ξ−µ|. If p = 1, this proximity operator

simplifies as follows:

proxΦp
µ,α

ξ = sign(Re
(

ξ−µ)
)

max{|Re(ξ−µ)|−Re(α), 0}

+ ı sign
(

Im(ξ − µ)
)

max{|Im(ξ − µ)| − Im(α), 0}. (6)

However, due to the spatial and spectral regularization terms

in Eqs. (2) and (3), we need to calculate the proximity

operators of Φp
µ,α ◦ T and Φp

µ,α ◦ F , respectively. These

operators can be calculated based on [11, Lemma 2.4],

leading to proxΦp
µ,α◦T = T−1 ◦ proxΦp

µ,α◦T ◦ T (similarly

proxΦp
µ,α◦F ).

3) Optimization algorithm:

Since the cost function in Eq. (4) is made up of more

than two non-necessarily differentiable terms, an appropriate

solution for its minimization is the Parallel Proximal Algo-

rithm [11]. A key advantage of this algorithm is that its com-

putations can be parallelized while converging to the global

minimum. The resulting algorithm for the minimization of

the optimality criterion in Eq. (4) is described below.

Algorithm 1 Hybrid MRSI denoising

Set γ > 0, λ ∈]0, 2[, n = 0, (ωi)1≤i≤3 ∈ [0, 1]3 s. t.
∑3

i=0 ωi = 1, S(n) =
∑3

i=1 ωiU
(n)
i , U

(n)
i = (sr)r∈R =

(yf )1≤f≤N ∈ (CK×N )3.

1: repeat

2: Calculate p
(n)
1 = prox γ

ω1
DS.

3: Calculate p
(n)
2 = prox γ

ω2
gS.

4: Calculate p
(n)
3 = prox γ

ω3
hS.

5: Set P (n) =
∑3

i=1 ωip
(n)
i .

6: ∀i = {1, 2, 3} do U
(n)
i = U

(n)
i +λ(2P (n)−S(n)−p

(n)
i ).

7: S(n+1) = S(n) + λ(P (n) − S(n)).
8: Set n← n+ 1.

9: until Convergence.

10: return Ŝ = S(n).

IV. RESULTS

A. Synthetic Data

The proposed method was initially tested on synthetic data.

We simulated a MRSI data set based on values commonly

reported in the literature [14]. Simulated spectra contained

the three largest metabolite signals in healthy brain tissue,

Choline (Cho), Creatine (Cr) and N-acetyl-aspartate (NAA).

Spectral lines were simulated using Gaussian and Lorentzian

lineshapes to assess the performance in both cases. Different

levels of additive white Gaussian noise were added to the

ground truth signal (see Tab. I). The proposed sparse spec-

tral spatial regularization (SSSR) is compared with wavelet

shrinkage (WS) and with the spatio-spectral regularization

(SSR) proposed in [5]. For each method, regularization

parameters have been chosen so as to optimize the output

SNR1 while preserving at best the spectral features. It is

worth noticing that fully autocalibrated approaches may be

used to automatically estimate these parameters directly from

the data [15]. SSR showed to be very sensitive to the order

and to the prediction coefficients of the Autoregressive model

that defines the spectral regularization term. We have chosen

here an order L = 3 to capture the three peaks present

in the simulated spectra. Linear prediction coefficients were

estimated using a least squares method. In SSSR, p = β = 1
as been used (see Section III-B), and as regards the wavelet

transforms, we used a Daubechies basis over one resolution

level. Different types of wavelet families were tested and

Daubechies showed to be the best suited for this type of

data. The size of the images used in the clinical rutine is

usually small (no bigger than 32x32). For this reason only

one spatial resolution level is considered. Fig. 1 shows the

relative concentrations of Cho/NAA obtained from MRSI

data using the three different methods. Fig. 2 shows the

corresponding error maps (σ = 8). The noisy map shows

fake abnormal voxels (caracterized by Cho/NAA ratio > 2)

and voxels where this ratio is understimated. While the other

methods only detect a few of these errors, the SSSR is able

to correct most of the irregularities and recover values very

close to the ground truth. Tab. I gives the SNR values of

the denoised MRSI data using the different methods and

for different noise levels. The same table also compares the

SNR of the Cho/NAA metabolic maps generated with MRSI

data denoised using different methods. SNR values reported

in Tab. I indicate that SSSR yields improved signal quality

when compared to the other approaches. This improvement

results in better metabolic maps with SSSR. Regarding

computational efficiency, SSSR is computationally more

expensive that simple WS since it involves more operations

due to the additional spatial term. On the other hand, SSSR

showed to be much more efficient than SSR. Indeed, SSSR

is 3 times faster than SSR (27 sec in comparison to 80 for

the case presented in this experiment). One potential reason

could be that SSR implies the inversion of sparse but large

matrices.

B. In vivo Data

To further analyse the robustness of our method, we have

tested the results on in vivo MRSI data from human brain.

These data were acquired with a Siemens Avanto 1.5 T

using a 3D CSI sequence with water suppression, TE=135

ms, TR =1500 ms, 512 FID data points and 4 averages.

Improvements with SSSR, compared to conventional signal

apodization, were found on experimental data. Apodization

1SNR = 20 log10
‖Sref‖2

‖Sref−Ŝ‖2



filters tend to broaden resonances and distort spectral line-

shapes [4]. By using SSSR, the SNR is increased without

decreasing spectral resolution, thus maintaining the spectral

features. We have also compared the performance of SSR

and SSSR on in vivo MRSI signals. SSSR has shown to

be more robust than SSR since it is less sensitive to spectral

lineshapes. Fig. 4 shows a real spectrum (related to abnormal

tissue) that has been denoised using both methods. We

can easily notice that SSSR allows preserving the spectral

lineshapes which are under-estimated with SSR. Fig. 3 shows

how apodization (Hanning filter) distorts spectral lines while

they are well preserved after SSSR denoising. Note that for

this experiment, the noise covariance matrix Σ has been

determined using a separated phantom acquisition.
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Fig. 1. Cho/NAA metabolic maps based on the ground truth (a), noisy (b)
and denoised signals using WS (c), SSR (d) and SSSR (e).
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Fig. 2. Errors associated with maps of Fig. 1.

TABLE I

SNR (dB) EVALUATION FOR SYNTHETIC DATA DENOISING,

BOTH FOR SIGNALS AND CHO/NAA METABOLIC MAPS.

Noisy WS SSR SSSR

σ = 6
Signal 10.24 10.54 11.89 13.08
Map 16.90 17.93 17.78 18.96

σ = 8
Signal 9.85 10.23 11.72 13.74
Map 16.06 18.47 18.30 21.01

σ = 12
Signal 9.07 9.86 11.44 14.18
Map 15.89 16.78 16.95 21.33

σ = 13
Signal 8.85 10.04 11.54 14.31
Map 15.06 16.06 16.26 18.18

V. CONCLUSION

We presented a new denoising method for MRSI which

overcomes the drawbacks of previous approaches without

any lineshape constraint. This property makes our method

suitable for handling in vivo data. It explores both spectral

and spatial dimensions of MRSI data. The inherent optimiza-

tion problem is solved using a fast and efficient proximal

NAA peak Cr and Cho peaks

Fig. 3. Comparison of standard apodization and SSSR: raw spectrum
(blue), apodized spectrum (red) and spectrum after SSSR denoising (black).

Fig. 4. Spectra denoising comparison: raw spectrum (blue), spectrum after
SSR denoising (red) and spectrum after SSSR denoising (black).

algorithm that allows parallel computations while guarantee-

ing the convergence to the global minimum. Furthermore,

the proposed approach can be easily extended to incorporate

more sophisticated priors, such as tissue distributions and

anatomical configuration extracted from companion MRI

images. This method will be compared with other promising

proposed methods [16], [17] for further validation.
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