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ABSTRACT

In many image restoration/reconstruction problems, using

redundant linear decompositions also named as frames may

be fruitful. Moreover, Total Variation (TV) is also widely

used in the edge-preserving regularization literature. Associ-

ating these two tools in a joint regularization framework may

be of great interest since they are somehow complementary.

However, estimating the regularization parameters in this

case becomes a tricky issue which cannot be performed by

using standard estimators. In this work, a hierarchical model

is introduced to solve this problem within a fully Bayesian

framework. A hybrid MCMC algorithm is subsequently pro-

posed to sample from the derived posterior distribution. We

show that this algorithm allows the regularization parameters

to be determined accurately. We finally investigate its appli-

cation to parallel MRI reconstruction, where the use of a joint

wavelet-TV regularization is also novel.

Index Terms— Bayesian estimation, regularization, MCMC, parameter

estimation, sparsity, wavelets, frame, Total Variation.

1. INTRODUCTION

In image restoration or reconstruction, data representation

is crucial. In this respect, many decompositions have been

proposed in order to obtain suitable representations in other

domains than the original one. Since the 90’s, Wavelet Trans-

forms (WT) [1] have been widely used in the regularization

literature since they allow one to detect local image features

and details through the sparse representation they provide.

WTs allow one to decompose signals into insightful scale-

space elements which are easier to interpret and process.

Moreover, it has been observed in the image processing litera-

ture [2,3] that overcomplete wavelet representations (frames)

are generally more advantageous than wavelet bases. On the

other hand, Total Variation (TV) [4] has also been widely

used in edge-preserving regularization [5]. A major difficulty

when using frames is to estimate the regularization param-

eters. As outlined in [6], since frame synthesis operators

are generally not injective, the determination of the frame

coefficients is an underdetermined problem even in the case

of a perfectly known signal. Moreover, because of the TV

properties, this parameter estimation problem becomes more

difficult when coupling TV to frame representations (FRs) in

a joint regularization framework. In this paper, we propose a

hierarchical approach in order to address this problem from a

Bayesian viewpoint. This approach can be applied to noisy

data when only inaccurate measurements of the signal are

available. Our work takes advantage of the developments

in Markov Chain Monte Carlo (MCMC) algorithms [7]. In

particular, we will consider hybrid MCMC algorithms com-

biningMetropolis-Hastings (MH) and Gibbs moves to sample

according to the posterior distribution of interest.

This rest of paper is organized as follows. We first describe

the general context of our study in Section 2. The statistical

problem and the proposed hierarchical Bayesian method are

presented in Section 3. Section 4 is devoted to the application

of the proposed algorithm to pMRI reconstruction. Finally,

conclusions are drawn in Section 5.

2. GENERAL CONTEXT

2.1. Problem statement

Let y ∈ RM×N be the image to be recovered from its ob-

servation z ∈ RM ′×N ′

degraded by the additive noise n ∈
RM ′×N ′

and a linear operatorH : RM×N −→ RM ′×N ′

des-

cribing the physical laws linking y to the measurement z:

z = Hy + n. (1)

Our inverse problem will consist of retrieving the image y

based on the observation z and the knowledge of H . How-

ever, due to the noise level or the linear operator H , the

problem may be ill-posed. In this case, one generally resorts

to regularization techniques [8], which consist of introducing

some prior knowledge about the target solution. However,

this knowledge may be easier to formulate using some image

features either in the original space such as the image TV,

or in a transformed space penalizing the frame coefficients.

It is well known [2, 3] that WTs provide us with a good

performance by preserving edges without introducing over-

smoothing effects. However, it is also known that wavelet

regularization may introduce some ringing artifacts along

the image contours. On the other hand, TV regularization

is well adapted to piecewise smooth regions, but may over-

smooth image details and introduce staircase effects. These

two edge-preserving regularizations are generally used sep-



arately. However, in order to benefit from their advantages,

they have been combined in some recent works [9, 10].

2.2. Combined wavelet-TV regularization

Let us denote by F : RM×N → RK×L and F ∗ : RK×L →
RM×N the wavelet linear operator and its adjoint, respec-

tively. Note that we concentrate here on wavelet representa-

tions, but the proposed method can be easily extended to any

kind of FR (e.g., Modulated Complex Lapped Transform). In-

troducing an FR in the observation model in Eq. (1) gives:

z = HF ∗x+ n, (2)

where y = F ∗x and x ∈ RK×L is the frame coefficient

vector associated to y. A general joint Wavelet-Total Varia-

tion (W-TV) regularization amounts to recovering the image

ŷ = F ∗x̂ from the estimated wavelet coefficients x̂ obtained

by minimizing the following penalized criterion:

J (x) = D(HF ∗x, z) + g(x) + h(F ∗x), (3)

whereD(HF ∗·, z) is a discrepancy measure between the ob-

served data z and the solution x, g(·) and h(F ∗·) are two

penalty functions. In the case of Gaussian noise, we have

for instance D(HF ∗x, z) = ‖HF ∗x − z‖2. After rein-

dexing the wavelet coefficients so that x = (xk)k∈K with

K = {1, . . . ,KL}, we will focus on the case where g(x) =∑
k∈K

|xk|
pk/γk (i.e., generalized Gaussian prior [6]) and

h(F ∗x) = λ‖F ∗x‖TV with λ > 0, γk > 0 and pk > 1
(to ensure the convexity of J ), ‖ · ‖TV being the TV semi-

norm [4]. Moreover, as explained in [6], the wavelet coef-

ficients can be split into G groups (typically subbands) hav-

ing similar statistical properties. Consequently, the optimality

criterion in Eq. (3) reads:

J (x) = D(HF ∗x, z) +
∑

g∈G

∑

k∈Sg

|xk|
pg

γg
+ λ‖F ∗x‖TV, (4)

where the summation covers the index set Sg of the gth group
containing ng elements, andG = {1, . . . , G}. The major dif-

ficulty here stems from the estimation of the regularization pa-

rameters λ, γ = (γ1, ..., γG)
T and p = (p1, ..., pG)

T. In fact,

using redundant wavelet representations makes the reference

wavelet coefficients not directly observable even if a reference

image is available since the wavelet operator is not bijective.

Moreover, the TV penalty makes the use of standard estima-

tors such as the Maximum Likelihood (ML) estimator very

complicated regarding to the inherent maximization problem.

This difficulty has been outlined in [11] where a hybrid regu-

larization is applied combining an ℓ1 sparsity term and a TV

penalization. This problem is addressed within a Bayesian

viewpoint by proposing an algorithm based on a hierarchical

model which allows us to estimate these parameters when a

redundant FR is used in combination with a TV penalization.

Note that when only a TV regularization term is considered,

some automatic methods may be used (e.g., SURE, L-curve)

to estimate the TV regularization parameter [12]. However,

the large number of parameters in hybrid regularizationmakes

the extension of these methods complicated.

3. REGULARIZATION PARAMETER ESTIMATION

3.1. Hierarchical Bayesian Model

In a probabilistic setting, z and x are assumed to be reali-

zations of random vectors Z and X . Our goal will be to

characterize the posterior probability distribution of X given

Z, by considering some parametric probabilistic model and

by estimating the associated hyperparameters. In this con-

text, we will denote byΘ the random variable associated with

the hyperparameter vector θ whose prior probability density

function (pdf) is denoted by f(θ). We also assume that a

reference image is available. In this context, the linear oper-

ator H in Eq. (2) reduces to the identity, and the error n is

modeled by imposing that x belongs to the closed convex set

Cδ = {x ∈ RK×L | ‖z − F ∗x‖ ≤ δ} where δ > 0 gener-

ally takes small values since it reflects the noise level (see [6]

for motivations). The conditional pdf f(z|x) is thus assumed

to be a uniform distribution on the closed convex set Dδ =
{z ∈ RM×N | ‖z − F ∗x‖ ≤ δ}. Using the hierarchical

structure between Z,X and Θ, the conditional distribution

of (X,Θ) given Z can be written as

f(x, θ|z) ∝ f(z|x)f(x|θ)f(θ), (5)

where ∝ means “proportional to”. The following prior distri-

bution will be assigned to the frame coefficients of the image

assumed to be:

f(x|θ) =
e
−(λ‖F∗

x‖TV+
∑

k∈K

|xk|pk

γk
)

C(θ)

=
e−λ‖F∗

x‖TV

C′(θ)

∏

g∈G

e
−

∑
k∈Sg

|xk|
pg

γg

γ
ng/pg
g

, (6)

where θ = (λ,γ,p) and C(θ) = C′(θ)
∏

k∈K
γ
1/pk

k =

C′(θ)
∏

g∈G
γ
ng/pg
g is a normalization constant which en-

sures that f(x|θ) is a density and leads to a tractable expres-

sion of the posterior distribution. The hierarchical Bayesian

model for the FR is completed by the following hyperprior

f(θ) ∝ C′(θ)1[0,10](λ)
∏

g∈G

[
1

γg
1R+(γg)1[0,3](pg)

]
, (7)

which is improper due to the hyperprior on γg , and where for
a set A, 1A(ξ) = 1 if ξ ∈ A and 0 otherwise. This hyper-

prior is of practical interest since Jeffrey’s prior on γg is non-
informative, and the intervals [0, 3] and [0, 10] cover all pos-
sible values of pg and λ usually encountered in practice. The

introduction of the normalization constant C′(θ) in the hy-

perprior simplifies the calculation of the posterior in Eq. (5).

Bayesian estimators such as the maximum a posteriori (MAP)



or the minimum mean square error (MMSE) associated with

the posterior distribution in Eq. (5) have no simple closed-

form expressions. The solution developed in this paper for

estimating the unknown model parameters is to use MCMC

methods to draw samples of x and θ from the posterior pdf in

Eq. (5), and compute estimates from these generated samples.

3.2. Sampling strategy

Sampling according to the posterior distribution in Eq. (5)

will be performed by using a hybrid Gibbs sampler to iter-

atively sample according to f(x|θ, z) and f(θ|x, z).

3.2.1. Frame coefficient sampling

Straightforward calculations yield the conditional distribution

f(x|θ, z) ∝ 1Cδ
(x)e−λ‖F∗

x‖TV

∏

g∈G

e
−

∑
k∈Sg

|xk|
pg

γg . (8)

Sampling directly according to this truncated distribution is

not easy to perform because of the TV term and since the ad-

joint frame operator F ∗ is usually of large dimension. Akin

to [6], we propose to use an MH move exploiting the alge-

braic properties of the frame operator F . More precisely, we

can write x = xH + xH⊥ , where xH and xH⊥ are realiza-

tions of random vectors taking their values in H = Ran(F )
and H⊥ = [Ran(F )]⊥ = Null(F ∗), respectively. The used
proposal distribution allows us to generate samples xH ∈ H
and xH⊥ ∈ H⊥ separately (see [6] for more details).

3.2.2. Hyperparameter sampling

Instead of sampling θ according to f(θ|x, z), we pro-

pose to iteratively sample according to f(pg|γg, λ,x, z),
f(λ|(γg, pg)g∈G,x, z) and f(γg|pg, λ,x, z) which, after

straightforward calculations, are given by:

• f(pg|γg, λ,x, z) ∝ e
−

∑
k∈Sg

|xk|
pg

γg 1[0,3](pg),

• f(λ|(γg, pg)g∈G,x, z) ∝ e−λ‖F∗
x‖TV1[0,10](λ),

• f(γg|pg, λ,x, z) ∝ IG
(

ng

pg
,
∑

k∈Sg
|xk|

pg

)
,

where IG(a, b) is the inverse gamma distribution with para-

meters a and b. Sampling according to the pdfs f(pg|γg, λ,x, z)
and f(λ|(γg, pg)g∈G,x, z) is achieved by using two MH

moves whose proposals q(pg | p
(i−1)
g ) and q(λ | λ(i−1)) are

Gaussian distributions truncated on the intervals [0, 3] and
[0, 10] with standard deviations σpg

= 0.05 and σλ = 0.01,
respectively (values fixed based on our empirical observa-

tions). The resulting sampler is summarized in Algorithm 1.

The validation of the proposed estimation strategy on syn-

thetic data (akin to [6, Section V.A]) is complicated due to the

TV term. Instead, the next section considers an application to

parallelMagnetic Resonance Imaging reconstruction (pMRI).

Algorithm 1 Proposed MCMC algorithm

Initialize θ(0) =
(
λ(0), (γ

(0)
g , p

(0)
g )g∈G

)
, x(0) ∈ Cδ and i = 1.

repeat
1) Sampling of x:

• Given x
(i−1) generate x

(i)
H and x

(i)

H⊥ and set

x̃
(i) = x

(i)
H + x

(i)

H⊥ (see [6] for details).

• Compute the acceptance ratio

r(x̃(i),x(i−1)) =
f(x̃(i)|θ(i−1),z) q(x(i−1)|x̃(i))

f(x(i−1)|θ(i−1),z) qη(x̃
(i)|x(i−1))

and accept the proposed candidate x̃(i) with probability

min{1, r(x̃(i),x(i−1))}.
2) Sampling of θ:

for g = 1 to G do

- Generate γ
(i)
g ∼ IG

(
ng

p
(i−1)
g

,
∑

k∈Sg
|x

(i)
k

|p
(i−1)
g

)
.

- Simulate p
(i)
g as follows:

• Generate p̃
(i)
g ∼ q(· | p

(i−1)
g )

• Compute the ratio

r(p̃
(i)
g , p

(i−1)
g ) =

f(p̃
(i)
g |γ

(i)
g ,x(i),z)q(p

(i−1)
g |p̃

(i)
g )

f(p
(i−1)
g |γ

(i)
g ,x(i),z)q(p̃

(i)
g |p

(i−1)
g )

and accept the proposed candidate with the probability

min{1, r(p̃
(i)
g , p

(i−1)
g )}.

end for

Simulate λ(i) as follows:

• Generate λ̃(i) ∼ q(· | λ(i−1)).

• Compute the ratio

r(λ̃(i), λ(i−1)) =
f(λ̃(i)|(γg ,pg)g∈G,x(i),z)q(λ(i−1)|λ̃(i))

f(λ(i−1)|(γg ,pg)g∈G,x(i),z)q(λ̃(i)|λ(i−1))

and accept the proposed candidate with the probability

min{1, r(λ̃(i), λ(i−1))}.
until Convergence

4. APPLICATION TO PMRI RECONSTRUCTION

PMRI [13] is a fast acquisition technique which is particu-

larly useful in functional MRI (fMRI) to improve the spatio-

temporal resolution. To this end, Nc receiver coils with com-

plementary spatial sensitivities are employed to acquire Nc

MRI signals at the same time. The received signal by a given

coil ℓ corresponds to the Fourier transform of the desired 2D

field y weighted by the corresponding coil sensitivity pro-

file. In pMRI, the frequency domain (i.e., k-space) is sam-

pled along the phase encoding direction at a rate that is R
times lower than the Nyquist one. Because of this low sam-

pling rate, registered data suffer from aliasing artifacts in the

image domain, which increase with the reduction factor. The

challenge here is to unfold the received images by exploit-

ing the complementarity between the sensitivity profiles of

the coils, and to reconstruct a non-aliased full Field of View

(FoV) image. SENSitivity Encoding (SENSE) [13] was one

of the early reconstruction methods operating in the spatial

domain. It relies on the observation model in Eq. (1) where

the linear operator H corresponds to the sensitivity operator.

Since the considered inverse problem is ill-posed due to the

observation noise and the ill-conditioning of the sensitivity

operator, a regularization is thus necessary to achieve better



reconstruction results under severe experimental conditions

(high reduction factor, low magnetic field,...). We propose

to apply a W-TV regularization in order to combine their ad-

vantages, in contrast with the current pMRI regularization lit-

erature where they are always used separately. Taking into

account that the observed signal is complex-valued, and since

the noise is Gaussian, the reconstructed image is obtained by:

ŷ = F ∗[argmin
x∈CK×L

‖HF ∗x− z‖2 +
∑

g∈G

∑

k∈Sg

[ |Re(xk)|
pRe
g

γRe
g

+

|Im(xk)|
pIm
g

γIm
g

]
+ λRe‖Re(F ∗x)‖TV + λIm‖Im(F ∗x)‖TV],

(9)

where pRe
g , γRe

g and λRe (resp., pImg , γIm
g and λIm) are the

regularization parameters to be estimated, and Re(xk) (resp.
Im(xk)) denote the real (resp. imaginary) part of the scalar

xk ∈ C. The regularization parameters for the real and imag-

inary parts are first estimated using Algorithm 1 based on a

SENSE reconstructed image (as a reference assuming that H
is the identity operator). Note that the frame coefficients es-

timated by Algorithm 1 are not used here. These parame-

ters are then injected in the optimality criterion in Eq. (9),

which is minimized using the Parallel ProXimal Algorithm

(PPXA) [10] in order to obtain the estimated frame coeffi-

cients x̂, and thus the image ŷ. In the experiments given be-

low, the used FR was the union of two orthonormal bases with

Daubechies and shifted Daubechies filter of lengths 4 and 8,

respectively. Three resolution levels have been used, which

means thatG = 20 groups of wavelet coefficients are consid-
ered. In these experiments, reconstruction results are given

for TV, wavelet and the proposed hybridW-TV regularization

using hyperparameters estimated by Algorithm 1. As shown

in Fig. 1, our results obtained on anatomical gradient echo

images acquired at a 1.5 Tesla magnetic field and a reduc-

tion factor R = 4 suggest that the combined W-TV approach

outperforms the other regularized reconstructions in terms of

reconstruction artifacts (see the middle part of the slice). The

zoom presented in Fig. 1 (bottom row) clearly shows that the

hybrid regularization allows to avoid over-smoothing and ir-

regularities caused by the TV and wavelet regularizations, re-

spectively. Also, the gain in Signal to Noise Ratio (SNR) has

to be noticed. In the displayed results, the remaining artifacts

have been attenuated by using the variational approach pro-

posed in [14]. Note that the hybrid W-TV regularization al-

lows us to achieve an SNR improvement of 2.59 and 0.33 dB
with respect to TV or wavelet regularization, respectively.

5. CONCLUSION

We proposed an MCMC algorithm to estimate the parame-

ters for a hybrid wavelet-TV regularization if a noisy obser-

vation of a reference image is available. The problem was ad-

dressed from a Bayesian viewpoint and relied on a hierarchi-

cal model. Our experiments showed that the proposed algo-

SNR=13.78 SNR=16.04 SNR=16.37

Fig. 1. Reconstructed images using the TV (left), wavelet (middle) and

the proposed W-TV regularization method (right): whole images (top row);

zoom (bottom row).

rithm provided accurate parameter estimation, which leads to

improved regularization performance for pMRI. Future work

will extend the proposed hierarchical Bayesian model to in-

volve the observation linear operator.
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