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Abstract—To assess physical activity intensity using raw ac-
celeration data, various thresholds have been proposed based on
different metrics, making it challenging to select the appropriate
threshold, particularly when trying to find a threshold adapted
to a similar study in terms of device type, population, and
device placement. In this study, a cross-validation method is
proposed that does not take into account the specific details of
the data recording device, the placement of the device, and the
characteristics of the population being recorded. We collected
acceleration data from 18 healthy children and 18 children
with attention deficit/hyperactivity disorder (ADHD) in normal
living conditions using the Actigraph GT9X. After collection,
the raw data underwent processing steps such as preprocessing,
segmentation, and metric extraction. Subsequently, five intensity
thresholds were applied to this data, and a voting method using
an aggregation approach was used to combine the classifications
from each threshold to obtain a final classification. The findings
indicated that 97.2% of the voting classifications are reliable (total
and approximate decisions) for children with ADHD (97.4% for
healthy children), while 2.8% (2.6% for healthy children) should
be considered with caution. In conclusion, our approach is flexible
and adaptable to different devices and population groups, making
it a valuable tool for assessing physical activity in various research
contexts.

Index Terms—Accelerometry, Activity Metrics, Cut-points,
Physical activity, Hyperactivity, Attention Deficit Hyperactivity
Disorder

I. INTRODUCTION

In recent years, technological advancements in the field of
sensors have enabled the development of wearable devices,
capable of recording movements over extended periods. These
devices have been used to study various conditions, including
Attention Deficit Hyperactivity Disorder (ADHD).

ADHD is a neurodevelopmental disorder that affects 3 to
5% of children worldwide [1]. This disorder is characterized

by inattention, impulsivity, and hyperactivity, which signifi-
cantly interfere with daily life activities.

To study the motor overflow of children with ADHD, it
is necessary to quantify their movements in everyday life
conditions. However, classifying the intensity of movements
from data collected by wearable devices can be challenging.
This classification involves translating accelerometer data into
categories of physical activity intensity: sedentary, light, mod-
erate, and vigorous.

In a previous study [2], a smartwatch was employed to
objectively detect detailed movements in children with ADHD
using gyroscope and accelerometer measurements in a school
environment.

The work of [3] suggests using thresholds on accelerometer
data calculated as Counts Per Minute (CPM). The challenge
lies in generalizing this approach to various accelerometer
devices [3], [4].

This article proposes a cross-validation approach to be
applied to raw triaxial accelerometer data recorded in everyday
life conditions. We apply this approach in the case of children
with ADHD. The approach is based on the concept of ”wisdom
of the crowd,” which is the idea that large groups of people
are collectively smarter than individual experts when it comes
to problem-solving, decision-making, innovating, and predict-
ing. This concept is widely used in various fields, including
computer science, to enhance result accuracy.

Our approach stands out for its high flexibility and adapt-
ability to various devices and population groups. It can be
used with different types of data collection devices, such as
actigraphs placed on various parts of the body or modern
wearable devices like smartwatches. Furthermore, it can be
tailored to different populations, whether they are adults,
adolescents, children, or specific groups such as individuals



TABLE I
ACCELEROMETER RAW DATA CUT POINTS IN CHILDREN (MG).

Source Device Age Metric Cut-Points Accuracy / Sensitivity (%)

Hildebrand 2014, 2016
(ENMO ACT)

ActiGraph GT3X+
Non-dominant wrist 7-11 yr ENMO

Light: 35.6
Moderate: 201.4
Vigorous: 707.0

Sedentary : 96
Light: 96

Moderate: 50
Vigorous: 79

Hildebrand 2014, 2016
(ENMO GENE)

GENEActiv
Non-dominant wrist 7-11 yr ENMO

Light: 56.3
Moderate: 191.6
Vigorous: 695.8

Sedentary : 96
Light: 96

Moderate: 64
Vigorous: 79

Phillips 2013
(ENMOa LW)

GENEA
Left wrist 8-14 yr ENMOa

Light: 87.5
Moderate: 250
Vigorous: 750

Sedentary : 94.7
Light: N/A

Moderate: 88.1
Vigorous: 91.3

Phillips 2013
(ENMOa RW)

GENEA
Right wrist 8-14 yr ENMOa

Light: 75
Moderate: 275
Vigorous: 700

Sedentary : 94.8
Light: N/A

Moderate: 82.4
Vigorous: 89.3

Schaefer 2014
(BFEN)

GENEActiv
Non-dominant wrist 6-11 yr BFEN

Light: 190
Moderate: 314
Vigorous: 998

Sedentary : 83.3
Light: 27.6

Moderate: 41
Vigorous: 88.7

with certain medical conditions. This versatility and broad
applicability make our approach a valuable tool for assessing
physical activity in various research contexts.

The rest of this article is organized as follows. Section 2
provides a literature review. The proposed method is then
elaborated upon in Section 3. The results of our research, our
analysis, and an interpretation of these results are presented in
Section 4. The conclusion section summarizes the main points
discussed and presents some perspectives.

II. LITERATURE REVIEW

Usually, accelerometer manufacturers provided proprietary
measurements called ”activity counts” (AC), which were
widely used to assess the volume or intensity of physical
activity, as well as to predict energy expenditure [5]–[10]. At
that time, these measurements were the only outputs available
for accelerometers used in research. However, recently, high-
resolution raw accelerometer data has become accessible on
various devices, including the ActiGraph GT9X accelerometer.
Researchers have started to adopt new analytical approaches
to directly exploit raw data rather than relying on software
provided by the manufacturer [11]–[18] .

In our literature search, we identified two systematic reviews
[3], [19] that compiled articles presenting physical activ-
ity thresholds based on raw accelerometer data and activity
metrics [20]–[23]. Furthermore, we identified an R package
(GGIR) [24] designed for processing raw accelerometer data,
which provides a list of thresholds along with instructions for
their use with GGIR. By cross-referencing information from
these sources, we selected articles offering specific thresholds
for children as shown in Table I.

Hildebrand et al. [25], [26] conducted a comparative study
using the ActiGraph GT3X+ (AG) and the GENEActiv (GA)
placed on the hip and wrist of children and adults. They ob-
served a significant difference in acceleration values between
placements on the hip and wrist. In their study, they developed
intensity thresholds for physical activity in children and adults
using the Euclidean Norm Minus One (ENMO) metric. ENMO
is calculated by taking the Euclidean norm (vector magnitude)
of the three raw acceleration signals minus 1.

Phillips et al. [27] established intensity thresholds using
the GENEA and calibrated them against oxygen consumption
(VO2). They defined thresholds for classifying activities into
sedentary, light, moderate, and vigorous intensities, depending
on whether the GENEA was worn on the wrist or hip.
These thresholds were defined through values of Euclidean
Norm Minus One with Amplitude (ENMOa). ENMOa is a
variation of ENMO that takes into account the amplitude of
acceleration signals. To calculate ENMOa, the absolute value
of acceleration for each axis (x, y, and z) was taken, 1g
was subtracted, and the sum of these absolute values was
computed.

Schaefer et al. [28] also established intensity thresholds
for physical activity using the GENEActiv placed on the
wrist in primary school children. For threshold definition,
they used the Butterworth-filtered Euclidean Norm Minus One
(BFEN) metric, which is a filtered version of ENMO. It uses a
Butterworth with a frequency range of 0.2 to 15 Hz to attenuate
high frequencies not related to physical activity.

We observed that the thresholds commonly proposed in the
literature are not effective in classifying all levels of physical
activity intensity. It is important to note that the thresholds



do not make the same classification errors. For example,
the thresholds proposed by Hildebrand et al. showed better
classification performance for sedentary/light and vigorous
activities, while their performance was lower for moderate
activities. Similarly, the thresholds established by Phillips
et al. exhibited lower sensitivity and specificity values for
moderate intensity compared to other intensities. We therefore
propose an approach based on the principle of wisdom of
the crowd as shown in Fig. 1. The approach enhances the
accuracy, efficiency, and reliability of classification results by
incorporating the contributions of multiple thresholds.

Fig. 1. Wisdom of the crowd concept on a set of cut-points.

III. OUR APPROACH

This section outlines the different steps of our approach
for the development of a voting system as depicted in Fig. 2.
These steps include data acquisition, signal preprocessing, sig-
nal segmentation, metrics values extraction/computation, and
classification. Various data science techniques are introduced
to enhance the classification outcome.

A. Data acquisition

For data acquisition, a sample of 18 children (15 boys and 3
girls) diagnosed with ADHD and 18 healthy children (15 boys
and 3 girls) was assembled from 6.5 to 11.5 years (mean=8.92
(±1.42)). Boys are more commonly affected by ADHD than
girls [29]. The cohort of selected patients depended on the cen-
sus collection. The study’s objectives were carefully explained
to all participants, and consent was obtained from their legal
guardians before their participation.

We used a commercial tri-axial accelerometer, the Acti-
Graph GT9X monitor, which is widely available on the market.
This accelerometer has a dynamic range of ±8 g (where
g represents the gravitational force of Earth) and offers a

sampling frequency range from 30 to 100 Hz. To initialize the
ActiGraph GT9X monitor, we connected it to a computer and
configured a sampling frequency of 30 Hz with a recording
duration of one minute, using ActiLife V6 software.

The data collected by the triaxial accelerometer consists of
numerical values representing acceleration along the three axes
(x, y, and z). These recordings were conducted in everyday life
conditions, where children were encouraged to wear the Acti-
Graph GT9X on their non-dominant wrist for one week. Each
day during that week, the children logged their activities in a
journal with the assistance of their parents. Subsequently, raw
accelerometer data was exported from the ActiLife software
in .gt3x format. During the one-week recording period, we
collected between 17 and 18 million lines of data per child.

B. Data Preprocessing

Data collected by accelerometers during daily life can be
divided into time intervals when the device is worn and time
intervals when it is not. Time intervals when the device is
not worn include periods of sleep, showering, and aquatic
activities.

It is crucial to make a precise distinction between the time
intervals when the device is worn and those when it is not,
as the wearing duration serves as the basis for assessing
time spent at different levels of physical activity intensity.
However, this differentiation can be challenging because con-
stant readings of zero can occur for various reasons, such
as removing the accelerometer during some activities (like
aquatic activities) or for no specific reason during sleep or
while sitting without movement for extended periods.

In our study, we assessed non-wear time of the accelerom-
eter using the standard deviation and the range of values
for each accelerometer axis, calculated over consecutive 30-
minute segments. For a segment to be considered non-wear
time, the standard deviation had to be less than 3.0 mg for at
least two of the three axes, or the range of values had to be
less than 50 mg for at least two of the three axes [30].

Data corresponding to non-wear periods were excluded from
the overall dataset for each participant.

As shown in Fig. 2, in this step our row dataset has the x,y,z
accelerations data as features and is indexed by time seconds.

C. Signal Segmentation

In order to extract useful information from the raw data,
it is important to divide data into smaller segments using
a non-overlapping sliding window approach. This approach
involves using a fixed-size window that moves along data.
By reducing the window size, activities can be detected more
quickly with low computational cost. However, it is possible
that the window may not contain the complete cycle of the
performed activity.

On the other hand, increasing the window size allows for
the detection of more complex activities but comes with a
higher computational cost. Therefore, it is not recommended to
increase the window size for real-time applications. According
to the literature, the most commonly used windows in activity



Fig. 2. The proposed pipeline in our approach

recognition systems are of small size. A window of 5 to 15
seconds is considered sufficient for recognizing an activity
[31].

In our study, we divided data into 5-second windows. Since
the accelerometer was initialized at a frequency of 30 Hz (30
samples per second), the number of samples in a window is
150 (30 Hz x 5 seconds).

D. Metrics extraction

The measured acceleration signal can be converted into
an activity value using an activity metric for fixed-length
windows. The activity metric defines the method by which
activity values are calculated from the preprocessed accelera-
tion signal. There are several metrics that can be applied to a
dataset.

In our study, we transformed the extensive raw data into a
reduced set of metric values. The purpose of this processing
step was to extract metric values for each window, accurately
representing the flow of raw data. To achieve this, we extracted
the three metrics mentioned in the literature review and
summarized them as follow :

ENMO =
1

n

n∑
i=1

max(ri − 1, 0)

, where r1, r2,. . . ,rn are the n magnitude of acceleration values
of the given epoch;

ENMOa =
∑
|
√
x2 + y2 + z2 − g|

, where x, y and z are accelerations in each axis;

BFEN =

f∑
i=1

|
√
x2 + y2 + z2|/(f)

, where f is sampling frequency; x, y and z are accelerations
in each axis.

Let M = {m1, m2, . . . ,mj} be a set of metrics, and W =
{w1, w2, . . .wi} a set of windows. For each mi and wj , we
can define a value mij that represents the value of metric mi

for window wj . The files from the ActiGraph GT9X (in .gt3x
format) were exported into the statistical software R, and the
GGIR package was used to perform metric calculations. This
allowed us to obtain precise measurements of motion-related
acceleration levels.

E. Activity Intensity
Research studies have established specific threshold values

for body acceleration measured in milligravity units (mg).
For example, physical activity with body acceleration above a
threshold in mg can be classified as moderate, while activity
with body acceleration below this threshold can be considered
light. This approach allows to classify the intensity of activity
based on accelerometer data, corresponding to the level of
physical effort exerted by an individual through their move-
ments.

Thus, the activity data we calculated from the metrics were
categorized into different levels of physical activity intensity,
namely sedentary, light, moderate, or vigorous, using cut-
points provided by previous studies (see Table I). The goal is



to obtain a classification of physical activity intensities based
on each cut-point used.

Let CP = {cp1, cp2, . . . , cpk} be a set of cut-points, M =
{m1, m2,. . . , mj} a set of metrics, and W = {w1, w2, . . . , wi}
a set of windows. For each cpi and each wj , we can define
a result cpij (’sedentary’, ’light’, ’moderate’, ’vigorous’) that
represents the outcome of applying cut-point cpi to the value
of a metric calculated for window wj .

F. Classification with voting system

Due to the difficulty of thresholds (or cut-points) in effi-
ciently identifying all physical activity intensities, we propose
an approach based on a voting system, utilizing the idea of
”Wisdom of the Crowd”. Our approach involves using multi-
ple independent classification thresholds to generate a voted
classification on a dataset. Then, by employing an aggregation
method like majority voting, the classifications from each
threshold can be combined to obtain a final classification (exp.
Fig.1).

The fundamental idea behind this system is that individual
errors can offset each other when aggregated. Therefore,
the collective response obtained tends to be more accurate,
unbiased, and closer to the truth than the opinion of a single
classification threshold.

The voting system we propose (see Algorithm 1) involves
collecting the most frequent classifications from each previ-
ously used classification threshold, while taking into account
their classification performance.

IV. EVALUATION

A. Evaluation Methodologies

We used three different methodologies to evaluate the relia-
bility of the voting system by analyzing the voting outcomes.

• The first approach involves obtaining information on
voting agreements. This entails retrieving the number
of studies that provide the same intensity classification
as the voting system result for each window. It helps
identify challenging cases by examining instances where
there is low agreement among the votes. The analysis of
voting agreements helps detect these problematic cases
that require additional attention.

• The second approach is to study the approximation of
intensity (see Algorithm 2) classifications of cut-points
that do not match the voting result. Since the value ranges
for each intensity differ (e.g., sedentary from 0 to 35.6,
light from 35.6 to 201.4), we identified the position of
the measured value relative to percentiles. This approach
allows us to determine, for non-unanimous votes, whether
the classifications (different from the voting result) of the
cut-points are approximate or not compared to the voting
result. For this purpose, we defined three decision classes:
total, approximate, and non-approximate. These decisions
provide insights into the consistency of non-unanimous
votes, which is crucial for evaluating the quality of
the voting system result. The analysis of approximation
provides additional information to better understand cases

Algorithm 1: Algorithm of Voting System
Input : A matrix containing the cut points

classifications for each window
Output: A matrix containing the voting result for each

window
for row in matrix rows do

frequent values← Compute the value counts of
each element in the row;
most frequent values← Find elements with the

maximum count in frequent values;
if length of most frequent values is 1 then

most frequent value← The only element in
most frequent values;

end
else

if ’sedentary’ is in most frequent values
and any element in
[’ENMO ACT’,’ENMO GENE’,
’ENMOa RW’,’ENMOa LW’] is ’sedentary’
in the row then

most frequent value←′ sedentary′;
end
else if ’light’ is in most frequent values
and any element in
[’ENMO ACT’,’ENMO GENE’] is ’light’ in
the row then

most frequent value←′ light′;
end
else if ’moderate’ is in
most frequent values and any element in
[’ENMOa LW’,’ENMOa RW’] is ’moderate’
in the row then

most frequent value←′ moderate′;
end
else if ’vigorous’ is in most frequent values
and any element in
[’ENMOa LW’,’ENMOa RW’,’BFEN’] is
’vigorous’ in the row then

most frequent value←′ vigorous′;
end
else

most frequent value← The first
element in most frequent values;

end
end
return most frequent value;

end



of low agreement among votes identified by the first
approach.

• The third approach involves calculating the distance be-
tween cut-points classifications and the voting result. By
measuring the classification distance, we can quantify the
similarity or divergence of decisions. Since we propose
using a set of cut-points in this study, the calculation of
classification distance helps identify and select the most
consistent cut-points for better results.

These approaches are applied separately to the data of the
groups of healthy children and those with ADHD to observe
the results between these different populations.

B. Results

The analysis of voting agreements (see Fig. 3) indicates that
for children with ADHD, 54.4% (53.4% in healthy children)
of the voting results were unanimous (5 out of 5), 33.5%
(32.6% in healthy children) were obtained by 4 out of 5 votes,
11.2% (13.2% in healthy children) were obtained by 3 out
of 5 votes, and only 0.9% (0.8% in healthy children) were
obtained by 2 out of 5 votes. Regarding the alignment of
decisions with respect to the voting system (see Fig. 4), it
is observed that for children with ADHD, 54.4% (53.4% in
healthy children) of the decisions are in total agreement, 42.8%
(43.9% in healthy children) are approximate, and only 2.8%
(2.7% in healthy children) are in disagreement. According to
the results of distance calculations (see Table II), the cut-
points ”ENMO GENE” (0.93-0.95), ”ENMOa LW” (0.94-
0.95), and ”ENMOa RW” (0.96-0.96) show a high proportion
of similarity with the voting system result in both cases. As
for BFEN and ENMO ACT, their similarity proportion is
lower than the other three but still significant (0.66-0.69 and
0.84-0.86) for both groups of children. Specifically, the cut-
point ”ENMO ACT” stands out by having a perfect similarity
(100%) with the voting system for vigorous intensities. The
cut-points ”ENMO GENE” and ”ENMOa LW” show high
similarities (99%) with the voting system for vigorous inten-
sities, following ”ENMO ACT” in both types of populations.
The cut-point ”ENMOa RW” distinguishes itself with signif-
icant similarity (99%) with the voting system for moderate
intensities.

C. Discussion

The diversity of intensity threshold sets for children poses
challenges in selecting an appropriate threshold due to various
data collection-related parameters. Although many studies
have been conducted to calibrate threshold values using raw
accelerometer data, there are no widely recognized threshold
values for assessing physical activity intensity in children
with ADHD. This is evident from the variety of threshold
sets used in the literature. This situation creates significant
challenges for researchers because the choice of ”optimal”
threshold values often relies on individual researchers’ deci-
sions or the adoption of already established thresholds in use.
Furthermore, researchers have also developed their own sets of
threshold values for their studies based on their judgment of

Algorithm 2: Algorithm of Vote Decision Reliability
Input : A matrix containing the cut points

classifications and voting results for each
window

Output: A matrix containing the decision voting result
for each window

for row in matrix rows do
freq intensity ← Most Frequent intensity value

in the row;
other values← List of values other than the
frequent intensity in the row;
decision← Initialize to empty;
if length of other values is 0 then

decision← ’Total’;
end
else

if freq intensity is ’sedentary’ and more
than half of other values are ’light’ with
values in the first 50 centiles then

decision← ’Approximate’;
end
else if freq intensity is ’light’ and more than
half of other values are ’sedentary’ with
values in last 50 centiles or ’moderate’ with
values in first 50 centiles then

decision← ’Approximate’;
end
else if freq intensity is ’moderate’ and more
than half of other values are ’light’ with
values in last 50 centiles or ’vigorous’ with
values in first 50 centiles then

decision← ’Approximate’;
end
else if freq intensity is ’vigorous’ and more
than half of other values are ’moderate’
with values in last 50 centiles then

decision← ’Approximate’;
end
else

decision← ’Non-Approximate’;
end

end
return decision;

end

previously published threshold values. This decision-making
process appears more arbitrary than scientific, making it sig-
nificantly challenging to estimate and synthesize moderate to
high-intensity physical activity levels among children across
different studies.

We have developed a voting-based system using a set of
threshold values to classify physical activity intensity from raw
accelerometer data. This approach does not take into account
device-specific, placement-specific, or population-specific fac-



TABLE II
CLASSIFICATION SIMILARITY WITH THE VOTING SYSTEM OUTCOME.

Intensity ENMO ACT ENMO GENE ENMOa LW ENMOa RW BFEN

Non-ADHD

global 0.84 0.93 0.94 0.96 0.69
sedentary 0.996 0.952 0.937 0.991 0.957

light 0.65 0.9 0.979 0.907 0.55
moderate 0.984 0.965 0.923 0.999 0.25
vigorous 1 0.999 0.999 0.908 0.65

ADHD

global 0.86 0.95 0.95 0.96 0.66
sedentary 0.998 0.95 0.947 0.994 0.981

light 0.7 0.96 0.991 0.918 0.5
moderate 0.99 0.97 0.92 1 0.24
vigorous 1 0.999 0.999 0.907 0.61

Fig. 3. Vote Distribution.

Fig. 4. Vote Decision Reliability.

tors. For example, to apply our approach to data recorded
with an actigraph placed on the hip in adults, one can simply
use predefined thresholds for adults, such as those reported
in the literature for raw data recorded using a hip-worn
accelerometer.

It is worth mentioning that some studies use other metrics,
such as Mean Amplitude Deviation (MAD), to develop phys-
ical activity intensity thresholds. Our approach is not specifi-
cally dependent on any particular metric, but we recommend

its use with metrics derived from raw acceleration data rather
than summary measures like Counts per Minute (CPM). It is
also important to note that some activity metrics may require
data filtering at the preprocessing stage before their use.

For our study, we selected five widely used sets of threshold
values for raw accelerometer data with the aim of contributing
to consensus on their specific application to children with
ADHD.

Regarding the classification of vigorous physical activity,
the ENMO ACT, ENMO GENE, and ENMOa LW threshold
sets showed significantly better classification similarity with
the voting system result than the ENMOa RW and BFEN
threshold sets. These classifiers appear to accurately iden-
tify periods when subjects were engaged in intense physical
activities. The ENMOa RW classifier has a high similarity
proportion for moderate activities compared to the voting
system result, indicating improved performance in detecting
activities requiring moderate physical effort.

In contrast, the BFEN classifier exhibits the greatest dis-
crepancy with the voting system result for all intensities.
This divergence can be attributed to the data preprocessing
technique used in BFEN, as it is the only classifier among the
five to employ a metric that applies a bandpass filter to the
data.

V. CONCLUSION

To the best of our knowledge, this study is the first one
applying a cross-threshold approach to multiple sets of raw
accelerometer data to estimate physical activity intensity in
children with ADHD.

Recent versions of accelerometers provide raw acceleration
data, theoretically allowing for comparisons across brands.
However, no approach has been defined to optimize the
selection of thresholds set on raw triaxial acceleration data
for children with ADHD.

Overall, the results support the application of the voting
system on threshold sets as 97.2% and 97.4% of the voting
system results are reliable (total and approximate decisions)
for children with and without ADHD, respectively. These
findings reveal a similar classification between participants in
healthy and ADHD groups. This suggests that the approach
proposed in this study works effectively for both groups.



Based on these results, we plan to build an artificial intelli-
gence model [32] to manage motor overflow in children with
ADHD in a school environment and assess its applicability to
a broader population in our future research.
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“Calibration and validation of accelerometer-based activity monitors:
A systematic review of machine-learning approaches,” Gait & posture,
vol. 68, pp. 285–299, 2019.

[20] J. H. Migueles, A. V. Rowlands, F. Huber, S. Sabia, and V. T. van
Hees, “Ggir: a research community–driven open source r package
for generating physical activity and sleep outcomes from multi-day
raw accelerometer data,” Journal for the Measurement of Physical
Behaviour, vol. 2, no. 3, pp. 188–196, 2019.

[21] K. Bakrania, T. Yates, A. V. Rowlands, D. W. Esliger, S. Bunnewell,
J. Sanders, M. Davies, K. Khunti, and C. L. Edwardson, “Intensity
thresholds on raw acceleration data: Euclidean norm minus one (enmo)
and mean amplitude deviation (mad) approaches,” PloS one, vol. 11,
no. 10, p. e0164045, 2016.

[22] V. T. Van Hees, L. Gorzelniak, E. C. Dean León, M. Eder, M. Pias,
S. Taherian, U. Ekelund, F. Renström, P. W. Franks, A. Horsch et al.,
“Separating movement and gravity components in an acceleration signal
and implications for the assessment of human daily physical activity,”
PloS one, vol. 8, no. 4, p. e61691, 2013.

[23] V. T. Van Hees, Z. Fang, J. Langford, F. Assah, A. Mohammad, I. C.
Da Silva, M. I. Trenell, T. White, N. J. Wareham, and S. Brage,
“Autocalibration of accelerometer data for free-living physical activity
assessment using local gravity and temperature: an evaluation on four
continents,” Journal of applied physiology, vol. 117, no. 7, pp. 738–744,
2014.

[24] B. Maczák, G. Vadai, A. Dér, I. Szendi, and Z. Gingl, “Detailed analysis
and comparison of different activity metrics,” Plos one, vol. 16, no. 12,
p. e0261718, 2021.

[25] M. Hildebrand, V. H. VT, B. H. Hansen, and U. Ekelund, “Age group
comparability of raw accelerometer output from wrist-and hip-worn
monitors.” Medicine and science in sports and exercise, vol. 46, no. 9,
pp. 1816–1824, 2014.

[26] M. Hildebrand, B. H. Hansen, V. T. van Hees, and U. Ekelund,
“Evaluation of raw acceleration sedentary thresholds in children and
adults,” Scandinavian journal of medicine & science in sports, vol. 27,
no. 12, pp. 1814–1823, 2017.

[27] L. R. Phillips, G. Parfitt, and A. V. Rowlands, “Calibration of the genea
accelerometer for assessment of physical activity intensity in children,”
Journal of science and medicine in sport, vol. 16, no. 2, pp. 124–128,
2013.

[28] C. A. Schaefer, C. R. Nigg, J. O. Hill, L. A. Brink, and R. C.
Browning, “Establishing and evaluating wrist cutpoints for the geneactiv
accelerometer in youth,” Medicine and science in sports and exercise,
vol. 46, no. 4, p. 826, 2014.

[29] S. Dalsgaard, E. Thorsteinsson, B. B. Trabjerg, J. Schullehner, O. Plana-
Ripoll, I. Brikell, T. Wimberley, M. Thygesen, K. B. Madsen, A. Tim-
merman et al., “Incidence rates and cumulative incidences of the full
spectrum of diagnosed mental disorders in childhood and adolescence,”
JAMA psychiatry, vol. 77, no. 2, pp. 155–164, 2020.

[30] V. T. van Hees, F. Renström, A. Wright, A. Gradmark, M. Catt, K. Y.
Chen, M. Löf, L. Bluck, J. Pomeroy, N. J. Wareham et al., “Estimation
of daily energy expenditure in pregnant and non-pregnant women using
a wrist-worn tri-axial accelerometer,” PloS one, vol. 6, no. 7, p. e22922,
2011.
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