
A machine learning technique for device non-wear
detection in children with ADHD

Ibrahim Traore
University of Champollion - ISIS Castres

Toulouse INP, IRIT laboratory, University of Toulouse, France
0009-0002-8587-6054

Imen Megdiche
University of Champollion - ISIS Castres

IRIT laboratory, University of Toulouse, France
0000-0002-1331-8662
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Abstract—Wearable devices dotted with accelerometers are
widely used to study motor overflow in children with attention
deficit/hyperactivity disorder (ADHD), as they provide accurate
and reliable measurements of physical activity. To accurately
determine the time spent in different intensities of physical
activity (sedentary, light, moderate or vigorous), it is necessary
to identify periods when devices are worn or not. However, this
can be problematic because children’s sedentary activities may
be mistaken for periods when devices are not worn.

In this paper we propose a machine learning approach to de-
tect non-wear periods using data collected from 18 children with
ADHD and 18 healthy children using the triaxial accelerometer
Actigraph GT9X worn on the non-dominant wrist for one week.
The objective is to reduce the overestimation of time spent in
activities obtained after data reduction with algorithms using
long non-wear time detection periods.

The agreement between real data and the classification per-
formed by SVM model (Concordance Correlation Coefficient >
0.95) supported the use of reduced time intervals for detecting
non-wear periods.

Index Terms—Raw Accelerometer Data, Machine Learning,
Non-Wear Time, Physical activity, Hyperactivity, ADHD

I. INTRODUCTION

The use of accelerometers to objectively assess levels of
physical activity (PA) has become common in research and
health monitoring, especially in children and adolescents.
These devices provide a reliable and non-intrusive method
to assess the frequency, duration, and intensity of daily PA.
However, the effectiveness of this method largely relies on
accurately determining the wear and non-wear time of the
accelerometer.

Previous studies [1]–[5] that the method used to determine
wear time can lead to significant errors in assessing levels of
physical activity.

Non-wear time refers to the duration when participants
do not wear the accelerometer during a given measurement
period. It should be typically excluded from further analysis,
assuming that the time when the accelerometer is actually
worn adequately represents the entire measurement period.

Algorithms have been proposed for detection of non-wear
time. A first approach using activity count detects non-wear
periods by counting consecutive zeros recorded by the ac-
celerometer [3]–[6]. Another approach using raw data iden-
tifies these periods based on standard deviation and amplitude
[7], [8]. These algorithms are defined over periods that are too
long in estimating time spent in sedentary, light, moderate, and
vigorous activities in children with ADHD.

In this article, we explored a machine learning-based ap-
proach tailored to shorter non-wear time detection intervals.
Initially, we used 15 and 10-minute intervals, consistent with
the literature, and aimed to minimize them while preserving
crucial information. To improve the specificity in determining
agreement for each wear and non-wear period, we compared
the model’s results with a real data reference.

The structure of this article is as follows: Section 2 presents
the related works, in Section 3, we provide a detailed descrip-
tion of the proposed method. The results of our research, along
with their analysis and interpretation, are presented in Section
4. In Section 5, we discuss the findings and their implications.
Finally, in the conclusion section, we summarize the key points
addressed and propose some perspectives for future research.

II. RELATED WORKS

The traditional method of validating wear and non-wear
time involves the use of logs, where participants record the
times they wear or remove the device. However, this procedure
can be cumbersome and potentially prone to errors, especially
when applied to large populations.

To automate this issue, algorithms have been proposed to
identify non-wear periods and are grouped based on the type
of data used : Activity Count (AC) or raw data.

AC data : algorithms defined using the summary measure
AC are based on consecutive zeros recorded by the accelerom-
eter. In the work of [9]–[15], different thresholds such as 10,
15, 20, 30, or 60 minutes of continuous zeros, have been used
as indicators of non-wear.



The use of these algorithms carries the risk of confounding a
genuine sedentary period with a non-wear period. It is difficult
to differentiate sedentary behavior from true non-wear because
in both cases, the accelerometer can record zeros.

Different studies have therefore been conducted to deter-
mine the appropriate threshold in children. J. Vanhelst et al.
recommended using the 30-mn consecutive zeros algorithm
to define non-wear time to improve the accuracy of assessing
physical activity levels in youth [6]. Esliger et al. suggested
using 20 mn of consecutive zeros as the criterion in chil-
dren [5]. This finding is similar to another study involving
369,517 children aged 8 to 13 years [4]. Paw of China et al.
estimated that the 20-minute algorithm was inadequate and
recommended a minimum of 60 mn of consecutive zeros as
the most realistic criterion for non-wear time [3]. Most of these
studies compared multiple non-wear time algorithms to diary
data and proposed the threshold they deemed most appropriate.

The main limitation of these studies lies in the difficulty
of generalizing their approaches to raw accelerometer data.
Indeed, these algorithms were defined based on the AC, which
is a proprietary measure dependent on the device used.

Raw data : algorithms defined using raw data estimated
non-wear time based on the standard deviation and range of
values for each accelerometer axis. One variant [7] involved
classifying consecutive 30-mn blocks as non-wear time if
the standard deviation was less than 3.0 mg for at least
two out of three axes, or if the range of values for at least
two out of three axes was less than 50 mg. Another variant
[8] relied on using 60-mn windows to reduce the risk of
accidentally detecting short sedentary periods as non-wear
periods. The windows overlapped (with 15-mn intervals and
a 45-minute overlap between windows), which was done to
improve the accuracy of detecting non-wear time boundaries
compared to using non-overlapping time windows. In a study
on motor overflow in children with ADHD, we measured their
movements using activity thresholds based on raw data [16]–
[19]. During the data reduction step, we applied we applied
raw data 30 mn algorithm. The 30-mn non-wear period was too
long as it tended to overestimate the time spent in sedentary,
light, moderate, and vigorous activities. For example, with a
log diary over a 7-day recording period that included school
hours, an ADHD child spent an average of 2 853, 1 667, 830
and 259 minutes, respectively, in sedentary, light, moderate,
and vigorous activities. After data reduction using raw data
30-mn algorithm, the results were 4 241, 1 763, 872 and
265 minutes, respectively, in sedentary, light, moderate, and
vigorous activities.

The evaluation of non-wear time criteria accuracy proved
to be robust through the use of these logs. However, there
are inherent vulnerabilities in this approach, making it prone
to errors. It is more appropriate to examine an automated
approach over a shorter period that reduces overestimation
of time spent in different intensities of physical activity in
children with ADHD.

III. EXPERIMENTAL METHODOLOGY

The methodology (see Fig. 1) associated with the generation
and evaluation of wear and non-wear time detection models
is discussed in this section. This includes the data collection
procedure, data segmentation method, feature extraction, di-
mension reduction, and the model development process.

Fig. 1. The approach for wear and non-wear time detection.

A. Actigraphy Data Collection

1) Data Description: Physical activity data were collected
from 18 healthy children (15 boys and 3 girls) and 18 children
with ADHD (15 boys and 3 girls) aged 6.5 to 11.5 years
(mean = 8.92 (+/- 1.42)) in normal living conditions using the
Actigraph (model GT9X; ActiGraph, Pensacola, CA, USA).

The purpose of the study was carefully explained to all par-
ticipants, and consent was obtained from their legal guardians
prior to their participation.

The Actigraph GT9X is a tri-axial accelerometer that as-
sesses physical activity by measuring mechanical movement
in the three spatial dimensions: a vertical vector (x), an antero-
posterior vector (y), and a medio-lateral vector (z).

This accelerometer has a dynamic range of ±8 g (where
g represents the force of gravity) and offers a sampling
frequency range from 30 to 100 Hz. In this study, the sampling
frequency was set to 30 Hz with a recording duration of one
minute using ActiGraph software support (ActiLife, v6.13.4,
Pensacola, CA, USA).

Participants were instructed to wear the accelerometer for 7
consecutive days (including school days and non-school days)
on their non-dominant wrist. The downloaded data from the
device using ActiLife software represented between 17 and 18
million data samples per child.

2) Real Data Generation: Participants were asked to main-
tain a log diary for a period of 7 days in which they wore
an accelerometer. Each day, they were required to note their
waking and bedtime, as well as the times when they wore
and removed the accelerometer, on a pre-printed standard
recording sheet. The use of these diaries proved to be a robust
method for assessing the accuracy of non-wear time criteria.
However, this approach has vulnerabilities and is subject
to errors. To establish real data, two distinct methods were
employed. The first involved using log diaries. The second
method was based on identifying non-wear periods using the
algorithm based on standard deviation and range of values for
each accelerometer axis, as described in [7]. The final result
was based on data for which there was agreement between the



information recorded in log diaries and algorithm’s results, as
illustrated in Fig. 2.

Fig. 2. Real Data Generation Process.

B. Signal Segmentation
Signal segmentation is a crucial step in our non-wear time

detection process (see Fig. 1). Accelerometer produces a
stream of raw, unprocessed signals representing the measured
acceleration. To capture the dynamics of these signals, we
divide them into smaller data segments. Segmentation involves
dividing sensor signals into distinct data segments. There are
different methods to perform this segmentation, and most of
them can be classified into three categories: activity-defined
windows, event-defined windows, and sliding windows [20].

The sliding window approach is the most commonly used
segmentation technique in activity studies [20]. It is preferred
due to its simplicity of implementation and lack of prepro-
cessing, making it well-suited for real-time applications. In
our study, we divided signals into fixed-size windows without
overlap using the sliding window approach. Our goal was to
reduce non-wear time detection period because longer non-
wear times lead to an overestimation of time spent in different
intensities of physical activity. Therefore, we experimented
with different window sizes (2, 3, 4, 5, 10, and 15 minutes).

Since the accelerometer was set with a sampling frequency
of 30 Hz (i.e., 30 samples per second), the number of samples
in a 15-minutes window is 27,000 (30 Hz x 60 seconds x 15
minutes).

C. Features extraction and dimension reduction
Feature extraction helps to reduce the number of resources

required to analyze a signal. Raw signals collected using

TABLE I
FEATURE DESCRIPTIONS.

Feature Description
1 - 3 Mean
4 - 6 Standard Deviation
7 - 9 Maximum
10 - 12 Minimum
13 - 15 Difference of maximum and minimum
16 - 18 Median
19 - 21 Number of values above mean
22 - 24 Number of values through mean
25 - 27 Covariance (x-y, x-z, y-z)

wearable sensors during movement activities are typically
sampled at discrete time intervals and contain a large number
of data points or samples for analysis purposes.

In many previous studies, machine learning methods have
been used to detect the type and level of human activity from
data collected using actigraphs [21]–[23]. The most commonly
used features to characterize actigraphy signals were of a sta-
tistical nature extracted from the time and frequency domains.

In our study, we chose to use statistical features (see Table
I) in the time domain due to their variability and reported good
performance in the literature [24]. Most of the feature groups
have three components in this order: x, y and z.

We used Principal Component Analysis (PCA) to reduce
dimensionality and identify the most discriminative informa-
tion. PCA involves replacing the initial set of data with a new
reduced set constructed from the initial set of features. Out of
the initial 27 features, we identified 15 principal components
that effectively captured the variance in the data.

D. Classification of wear and non-wear time
The non-wear time detection algorithm needs to be able

to recognize the accelerometer signal pattern corresponding
to wear and non-wear time. We formulated non-wear time
detection using two different approaches:

• Anomaly Detection Approach with One-Class SVM: The
One-Class SVM (Support Vector Machine) algorithm is
a machine learning method used for anomaly detection
and classification of a single class of data [25]. The goal
of this algorithm is to find the decision boundary that
best encloses normal class data. Data points outside of
this boundary are considered anomalies. In our case, we
considered wear time as normal class and attempted to
detect anomalies (non-wear time). The different steps of
this approach can be defined as follows:

– Step 1: Choose appropriate parameters (kernel =
’rbf’, gamma = ’scale’, nu=’0.1’).

– Step 2: Use the data from normal class (70% of wear
time) to train the model.

– Step 3: Use the trained model to evaluate new
samples (30% of balanced wear time with an equal
number of non-wear time).



– Step 4: Evaluate algorithm’s performance in terms
of anomaly detection rate and false positive rate.

• Binary Classification Approach with SVM: The SVM
(Support Vector Machine) algorithm is a supervised learn-
ing method used for classification and regression. Its main
objective is to find an optimal hyperplane that separates
data into different classes. In our case, we formulated
non-wear time detection as a two-class classification
problem: wear time and non-wear time. We tested this
approach with SVM and KNN (k-nearest neighbors), and
it was SVM that showed the best results among these
two algorithms. The different steps of this approach with
SVM can be defined as follows:

– Step 1: Choose appropriate parameters (kernel =
’rbf’, gamma=’scale’, C=’1’).

– Step 2: Use training data (70% of the data) to train
the model.

– Step 3: Use the trained model to predict the class
labels of new data (30% of the data).

– Step 4: Evaluate algorithm’s performance.
The principal components identified through PCA are used

as inputs for machine learning algorithms (SVM and One-
Class SVM) to build models capable of recognizing non-wear
time from the accelerometer signal. Through this approach,
we improved the performance of models by focusing on the
most relevant information.

IV. EVALUATION

A. Evaluation Methodologies

The performance of non-wear time detection algorithms
based on acceleration can be evaluated using measures such as
accuracy, recall, and F-measure. Accuracy (1) is calculated by
comparing the number of instances correctly classified as wear
time and non-wear time with the total number of instances.

• True Positive (TP) is The number of instances correctly
classified as wear time.

• True Negative (TN) is The number of instances correctly
classified as non-wear time.

• False Positive (FP) is The number of instances incorrectly
classified as wear time.

• False Negative (FN) is The number of instances incor-
rectly classified as non-wear time.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision (2) is a performance measure that focuses on
the proportion of correctly predicted wear time relative to all
instances predicted as wear time.

Precision =
TP

TP + FP
(2)

Recall (3) is calculated by comparing the number of in-
stances correctly classified as wear time with the total number
of instances actually wear time, whether correctly classified or
not.

Recall =
TP

TP + FN
(3)

The F-measure (4) is a combination of precision and recall,
and it is calculated using the following formula:

F1 =
2× Precision × Recall

Precision + Recall
(4)

To evaluate the agreement between detection algorithm results
and real data, we used the Concordance Correlation Coeffi-
cient (CCC), which is a statistical test to measure agreement
between two methods. CCC (5) values were interpreted as
follows: poor concordance for values below 0.45, reasonably
good concordance for values from 0.45 to 0.75, and excellent
concordance for values above 0.75 [6], [26].

CCC =
2ρσ1σ2

σ2
1 + σ2

2 + (µ1 − µ2)2
(5)

, where ρ is the correlation coefficient between the two
variables, σ2

1 and σ2
2 are the corresponding variances, µ1 and

µ2 are the means for the two variables.

B. Results

In this study, we used a sliding window approach to analyze
raw acceleration data and extracted features for each window
to classify them as wear or non-wear time. The number of
windows for time intervals of 2, 3, 4, 5, 10, and 15 mn were 74
884, 49 921, 37 429, 29 943, 14 962, and 9 970, respectively,
for children with ADHD.

The classification results of the acceleration data into wear
and non-wear time are presented in Tables II and III for the
two study populations. The classifiers were trained on their
respective training sets, and the classification results in Tables
2 and 3 were obtained using their respective test sets.

We reported the accuracy, recall, and F-measure for each
classifier and window size. The classification accuracies for
One-Class SVM and SVM ranged from 65 − 94% and 97 −
98%, respectively, for healthy children (94 − 95% and 99%
for children with ADHD). The classification results of One-
Class SVM were better in children with ADHD compared to
healthy children. However, the best classification results were
achieved using SVM, with an accuracy exceeding 98% for all
window sizes and for both populations.

The confusion matrices for wear and non-wear time for
the two groups of children using SVM with 5-minutes win-
dows are presented in Tables IV and V. In the confusion
matrix for children with ADHD (Table IV), we observed 8
misclassified wear time windows and 48 misclassified non-
wear time windows, while in healthy children (Table V), 101
misclassified wear time windows and 37 misclassified non-
wear time windows were observed.

V. DISCUSSION

Accelerometers are a promising sensors for studying motor
overflow in children with ADHD as they provide relatively
accurate and reliable data on physical activity. However, to
maximize data quality, it is essential to establish standard data



TABLE II
CLASSIFICATION RESULTS OF THE TWO ALGORITHMS IN CHILDREN WITH ADHD.

Windows size (mn) One Class SVM SVM
Accuracy Recall F-measure CCC Accuracy Recall F-measure CCC

2 0.949 0.999 0.951 0.898 0.994 0.993 0.993 0.989
3 0.950 1 0.952 0.900 0.994 0.990 0.993 0.988
4 0.950 0.999 0.952 0.900 0.994 0.988 0.993 0.988
5 0.944 1 0.947 0.888 0.993 0.987 0.992 0.987
10 0.945 1 0.948 0.890 0.990 0.978 0.988 0.980
15 0.951 1 0.953 0.903 0.989 0.975 0.987 0.978

TABLE III
CLASSIFICATION RESULTS OF THE TWO ALGORITHMS IN HEALTHY CHILDREN.

Windows size (mn) One Class SVM SVM
Accuracy Recall F-measure CCC Accuracy Recall F-measure CCC

2 0.651 0.399 0.533 0.302 0.981 0.994 0.971 0.957
3 0.657 0.410 0.545 0.314 0.982 0.992 0.973 0.960
4 0.781 0.660 0.751 0.562 0.983 0.988 0.974 0.961
5 0.741 0.578 0.691 0.483 0.983 0.986 0.975 0.963
10 0.944 1 0.947 0.888 0.982 0.970 0.973 0.960
15 0.941 1 0.945 0.883 0.978 0.960 0.966 0.950

TABLE IV
CONFUSION MATRIX FOR SVM WITH 5-MINUTES WINDOWS IN CHILDREN

WITH ADHD.

Predicted Wear Time Predicted Non-Wear Tim
True Wear Time 5 205 8

True Non-Wear Time 48 3 720

TABLE V
CONFUSION MATRIX FOR SVM WITH 5-MINUTES WINDOWS IN HEALTHY

CHILDREN.

Predicted Wear Time Predicted Non-Wear Tim
True Wear Time 5 640 101

True Non-Wear Time 37 2705

reduction procedures. The algorithm and estimation time for
non-wear periods used can have a significant impact on the
quantity and quality of data retained for analysis.

In this study, we explored two machine learning approaches
to detect non-wear periods from triaxial accelerometer data
collected from children with ADHD and healthy children.
The aim was to propose an effective non-wear time detection
approach specifically tailored to children with ADHD. To
achieve this, we examined the performance evolution of the
models as the detection period decreased.

The SVM algorithm demonstrated an accuracy exceeding
98% across different periods used for non-wear time detection
in both populations. However, the One-Class SVM algorithm
struggled to identify wear and non-wear periods in healthy
children for 2, 3, 4, and 5-minutes windows. This may be
due to the difficulty in differentiating non-wear periods from
sedentary movements, as well as the fact that children with
ADHD are generally more agitated than healthy children.

The comparison between real data and classification per-
formed by the machine learning algorithms supported the
use of shorter time intervals for non-wear period detection.
Indeed, the agreement of SVM algorithm on each window

TABLE VI
TIME SPENT (MN) IN DIFFERENT INTENSITIES OF PHYSICAL ACTIVITY

AFTER REMOVING NON-WEAR TIME WITH LOG DIARY, SVM (5-MINUTE
WINDOWS), AND THE 30-MINUTE ALGORITHM BASED ON RAW DATA, FOR

A CHILD WITH ADHD.

Intensity Log diary 30 mn Algorithm (Raw data) SVM (5 mn)
Sedentary 2 853 4 241 3 550

Light 1 667 1 763 1 732
Moderate 830 872 847
Vigorous 259 265 261

size was excellent for wear and non-wear period detection
(CCC > 0.95).

The stability of both models in both populations begins from
the 4 and 5-minutes windows.

The comparison between SVM, log diary, and the 30-
minute algorithm based on raw data (Table VI) shows that our
proposed approach has decreased overestimation and allows
for correcting any reporting errors in the log diary.

This study has strengths and limitations. It is, to our
knowledge, the first study to experiment with machine learning
approaches and compare the results with real data obtained
from a cross-reference between a diary and a raw data-
based algorithm for non-wear period detection in children with
ADHD.

Although the sample size is relatively small and primarily
composed of male participants, we believe these results make
a significant contribution to the study of accelerometer data
collection and reduction and bring us closer to the goal
of establishing standardized procedures for non-wear period
detection for children with ADHD.

VI. CONCLUSION

In this article, we proposed a machine learning approach
for detecting wear and non-wear periods using accelerometer
data collected from children with and without ADHD. Our
results demonstrate that wear and non-wear periods can be



successfully distinguished using a machine learning algorithm,
even with reduced time intervals compared to those typically
used in the literature. Among the two classifiers tested, SVM
classifier exhibited the best performance with a 5-minutes
detection period, achieving an accuracy exceeding 98%. We
compared the performance of our approach to real data, and we
make evidence that our approach yielded satisfactory results.
Based on these findings, we recommend using the SVM
machine learning algorithm with 5-minutes windows in studies
evaluating physical activity levels and wear time in children
with ADHD. Our future work will involve applying this data
reduction approach to optimally identify the intensities of
physical activities in children with ADHD, focusing specif-
ically on periods corresponding to moderate and vigorous
intensity activities.
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