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Abstract. Domain-Specific Languages (DSLs) play a vital role in soft-
ware development, enabling the concise expression of domain-specific
concepts and requirements. In this study, we propose a novel approach
leveraging Large Language Models (LLMs) to assist the DSLs modelling
starting from natural language description. Our solution is a proof of
concept where Model Driven Engineering (MDE) is revisited taking ad-
vantage from the power of generative Al. Starting from human friendly
description and domain modelling language document type, LLM-based
system extracts relevant domain knowledge and builds the corresponding
DSL model. Such a model is then validated through an iterative process.
We applied our proposal to several case studies from different application
domains including software engineering, healthcare, and finance. Further-
more, we consider a wide range of existing LLMs usually adapted for
code generation. We also study the effectiveness of our solution through
multi-criteria experimental evaluation. Lastly, the results demonstrate
the feasibility and efficiency of our LLM driven MDE for DSL develop-
ment, and then advancing domain-specific modelling practices. By doing
so, we would enable the developer to save time and effort for further tasks
such as functional properties’ verification. A demo as well as a web ap-
plication for our developed solution are available online via the following
link https://alaouimdaghriahmed.github.io/demo-ecore-gen/.
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1 Introduction

Generative AT (GenAl) is revolutionizing our everyday personal and professional
life. It uses sophisticated algorithms to understand contextual knowledge, gram-
mar, and style in order to produce coherent and meaningful output. This is done
based on patterns and examples that Gen Al has been trained on. Here, we are
particularly interested in Large Language Models (LLMs) which are specific
models of GenAl. They rely on prompt engineering and are trained on consider-
able amounts of text data and learn their statistical properties. In such a context,
we focus on the intrinsic link between Software Engineering (SE) and GenAl,
and particularly LLMs driven engineering. While the application of GenAlI rec-
ognize several good impacts, there still many open issues to be studied when
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developing new software systems. For instance, it is well recognised to achieve
general-purpose languages generation using LLMs. However, LLMs are still not
well adapted for generating Domain Specific Languages (DSLs).

DSLs are languages designed for specific application domains. They offer sub-
stantial gains in expressiveness and ease of use compared with general-purpose
programming languages (GPS, e.g. Java, Python, C, etc.) in their domain of
application. DSL development is hard, requiring both domain knowledge and
language development expertise. However few people could have both.

DSLs can be well developed following Model Driven Engineering (MDE from
OMG MDAEI) methodology. By doing so, both developers and domain experts
focus on abstract models rather than actual system code. Here domain experts
are the future users and are not usually programmers. Both language expert
and domain expert cooperate together for developing a DSL following MDE
techniques. Such cooperation enables better understanding of each other, ambi-
guity resolution and bugs could be detected at early development stage. Hence,
this would ease DSL building and also increase software reliability.

The abstract syntax of a DSL is typically defined by a meta-model, which
serves as the foundation for establishing the language’s structure and rules. To
achieve this, a modeling language like Ecore (based on EMOF standardﬂ) is
suitable and is tool supported within the Eclipse Modeling Framework (EMF).

In the era of LLMs, domain experts find themselves equipped with a potent
tool for expression, i.e. natural language. Thus, applying LLMs would bridge
the gap between both domain and developer experts. However, generating a
meta-model from a natural language description faces two challenges. First, the
intricate and specific syntax of languages like Ecore can be difficult to manage
accurately, especially when the LLMs has not been trained on it. Second, even
when the syntax is learnt after giving its technical knowledge into prompting
step, the resulting artifacts might be erroneous w.r.t that syntax, and/or hold
semantics ambiguities. The later issue might arise mainly due to the unclear/in-
complete description given to the prompt.

In this paper, we explore the application of LLMs (and LLMs agents) for as-
sisting MDE in order to build new DSLs rather than generating general-purpose
languages. We suggest a full process including the syntactic verification and
its automatic fix. We also propose human interactive method to fix semantics
ambiguity. We apply our approach to several real-world use cases and perform
analytic study on given results to validate our process. Our ultimate goal is
twofold: i) define a new systematic LLM driven MDE methodology, and thus i)
provide users with good quality “assistance” in order to ease and improve the
DSL design and development cycle. The current work is different from classical
code-generation oriented LLMs (starCoder and other similar purpose models).
Although such LLMs are not heavy to be manipulated (including 1 to 15 billions
of parameters), they remain more adapted for GPL code engineering. To achieve
our goal, namely, assisting DSL development following OMG MDA principles, we

3 http://www.omg.org/mda/
* https://www.omg.org/spec/MOF/2.4.1/PDF/
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need to use additional APIs and LLMs agents to perform advanced and complex
software tasks.

The remainder of the paper is structured as follows. The Section [2] briefly
discusses related research work. Next, Section [3| outlines our LLM-Driven MDE
process. Section [4] presents all details about tool support as well well conducted
experiments. We synthesize in Section [5] several lessons learned from our work.
Finally, Section [6] sums up this work and gives some promising perspectives.

2 Related Work

In this section, we review previous research that is closely related to our work.
The recent review given in [4] details several existing work in the application of
LLMs for code engineering, ranging from general-purpose generation, summariz-
ing, understanding, comment generation, to example recommendation, etc. To
the best of our knowledge, there is no similar work addressing MDE engineering
using LLMs for modelling new DSLs as recommended by OMG MDA. In the fol-
lowing, we first explore earlier approaches that uses natural language processing
(i.e. NLP) techniques for DSL generation, highlighting the foundational methods
and their contributions. Later, we explore LL.Ms agents from the literature since
we believe that they are potential candidate to achieve DSL modelling following
somehow standardized process.

2.1 LLM for DSL generation

Classical NLP methods consisted of extracting domain specific rules from a tex-
tual description. For instance, Aurora et al. [I] successfully did that, while en-
hancing existing rule sets. Other work by Saini et al. [I2] developed a bot aimed
at extracting domain models from natural language, providing valuable assis-
tance to novice modelers.

With the advance of NLP techniques, it only made sense to exploit LLMs for
DSL exploitation tasks. One methodology outlined by Netz et al. [9] involved
leveraging the DSL CD4A, written in MontiCore, to provide both natural lan-
guage prompts and DSL specifications to an LLM to generate a web application.
Jha et al.[5] aimed to fix the hallucination part by exploit the dialog capabil-
ity of LLMs to iteratively steer them to responses that are consistent with our
correctness specification. A lot of other work focused on text-to-SQL tasks and
achieved good results using fine-tuning, Retrieval Augmented Generation [6] or
even In Context-Learning. Sun et al. [I3] explored this task in light of few-shot
prompting and instruction fine-tuning. Being our base for instruction fine-tuning
our models relative to our task. Our work in a similar way tried to combine these
concepts by passing relative information (knowledge or description) about our
DSL combine with iterative processing to check and fix errors. However, our
approach is generic and applies for modelling any DSL.
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2.2 LLM Agents

Although LLMs have not yet reached human levels of problem-solving ability,
their achievements are still impressive. Many of these models are pretrained on
massive datasets and then fine-tuned for specific problem-solving or coding tasks.
However, LLMs often face challenges with complex tasks. This is primarily why
LLM agents were introduced. LLM agents are all systems that use LLMs as their
engine and can perform actions on their environment based on observations. We
state here some agents from the literature w.r.¢ their use case :

— Reflection : The idea is to give back the LLM output as an input with a self
correct instruction. Madaan et al. [7] introduces Self-Refine, an approach for
improving initial outputs from LLMs through iterative feedback and refine-
ment

— Tool Use : Since APIs are being developed left an right to adhere to users
needs why not integrate them with agents. Patil et al. [10] addresses the
challenge of effectively using tools via API calls with LLMs. Gorilla, a fine-
tuned LLaMA-based model, demonstrates improved performance in writing
API calls and mitigates hallucination issues commonly encountered when
prompting LLMs directly.

— Task Planning : Planning Consists of deconstructing a problem into easier
and manageable sub problems. Wei et al. [I5] explore how generating a chain
of thought improves the ability of LLMs to perform complex reasoning tasks.

In our research, we investigate and integrate multiple agents to address chal-
lenges encountered in DSL design. This approach builds on the work of Qian et
al. [11], who decompose complex problems into smaller sub-problems that can
be tackled by various Al agents. Typically, an LLM is tasked with dividing the
problem and managing the outputs from these Al agents.

3 LLM Driven Engineering

Traditional MDE focuses on creating and exploiting domain models, which serve
as the primary artifacts of the engineering process. This classical approach em-
phasizes the systematic use of models as the main drivers of information ex-
change, system design, and implementation.

LLM Driven Engineering, on the other hand, leverages the capabilities of
LLMs to drive the engineering process based on prompting of natural language
description and possibly additional inputs. In our proposal, we considered the
following LLMs pillars :

— Natural Language Usage: LLMs provide a natural language interface for
defining and describing system requirements, designs, and implementations.
This reduces the barrier to entry, enabling a broader range of stakeholders
to participate in the engineering process.
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— Automatic Code Generation: LLMs can generate code directly from
natural language descriptions, bypassing the need for intermediate abstract
models. This can accelerate development and reduce the overhead associated
with model creation and transformation.

— Contextual Understanding: LLMs possess the ability to understand and
incorporate context from a wide range of sources, including documentation,
prior interactions, and example data. This enhances their ability to generate
relevant and contextually appropriate solutions.

3.1 Achieved Goals

Based on the aforementioned LLMs’ pillars, our solution is able to empower
model-driven engineering. Through innovative approaches and careful design
considerations, our solution ensures the following meaningfully advantages:

— Automation of DSL Generation: Our solution automates the process
of model generation from human given description, reducing the need for
manual intervention and speeding up the development cycle. By leveraging
LLMs, we empower domain experts to describe their requirements in nat-
ural language. In addition, we equip the developer with language model to
alleviate the complexity of design task.

— Automation of LLM output validation: Thanks to the use of Al agent
collaboration, we are able to solve inconsistencies in our LLM output by
iterative prompting and passing the errors back to the LLM until the getting
correct output.

— Enhanced Productivity and Efficiency: By streamlining the DSL gener-
ation process, our solution enhances productivity and efficiency in software
development, enabling rapid prototyping and iteration of domain-specific
models. The automation of validation and refinement tasks reduces manual
effort and accelerates the delivery of high-quality DSLs.

3.2 A new DSL Modelling Process

Our LLM driven MDE for DSL development is sketched on Figure [1| where
each enumerated step is detailed below. The proposed process aims at gener-
ating a meta-model written in Ecore language (formatted w.r.t serialised XMI
format [3]), and this is performed based on two inputs : a Natural Language
Description and an Ecore technical description. The result is validated using a
syntactic parser based on agentic reasoning to handle ambiguous or incomplete
requests. By doing so, we ensure accuracy and completeness of generated models.

Notice that we use two different LLM agents’ families (see left-side and right-
side of Figure 1) depending of our usage needs. One main reason for doing so is
that our generation module (on the left-side) is fine-tuned after the generation
task, which is not the case for the right-side agents. Another reason is relative to
the used inputs and tools. The left-side one is equipped with document parsing
and web search while the right-side one needs a syntactic validator.
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1. Specific Prompt: Our solution starts with an input prompt holding two

parameters : ) the Natural Language Description (NLD) of a future DSL
including user requirements and semantics’ constraints; and i) document
type definition on a specific modelling language which rigorously gives all
technical and syntactic rules that must be satisfied by generated output.
For illustration, in the current work, this stands for Ecore definition file
passed as second prompt parameter. This is needed because LLMs are not
initially trained on such kind of modelling languages. Regarding prompting
method, we combine many techniques, namely, grammar prompting [I4],
COT [15] and tool use [16]. Notice that by doing so, we increase prompting
quality taking benefit from different methodologies. We illustrate our prompt
template on Figure 2a]

Output Generation : The LLM processes the input prompt to generate
the serialized result (in XMI format) by LLM inference. Considering Ecore
meta-model as target output, the inference consists in : first, parsing Ecore
language markers and extracting relevant concepts, entities, attributes, and
relationships, and then build structural model w.r.t the Ecore syntax. Notice
that, the inference step could use some components needed for complemen-
tary tasks, e.g. document parsing.

Model Validation : Initially, a meta-model is “one-shot” generated (see the
right arrow “—" going from step 1 to step 2) based on both input param-
eters mentioned in the initial step 1. This model is then parsed using the
domain grammar to check syntactic errors. If no errors are found, the valida-
tion process needs human intervention for semantics’ checking. He/shed will
be asked to provide more clarifications on missing/ambiguous semantics’
related features. If this is validated then the validated process terminates
and then step 4 on Figure [I] could be performed. However, if syntactic er-
rors raise, the algorithm incrementally fixes each of them thanks to LLM
agents and following iterative prompting. For each increment (i.e. repeating
step 3), both raised error and its corresponding meta-model are passed once
again into a LLM using the prompt as shown on Figure 2B} The LLM is
then prompted to fix detected errors. The meta-model is updated with the
suggested corrections, and the verification is restarted. This validation cycle
ends up once the meta-model is free from syntactic errors. Regarding the
process modelled in Figure [T} we formalize our syntactic validation method
in Algorithm [}

Regarding semantics’ quality and/or precision, this is left to domain ex-
pert appreciation. Our current goal is to assist both domain and developer
experts. Domain expert could add some precision to be taken into considera-
tion during the iterative prompting to improve and complete the previously
generated result. This would be also helpful for our ambiguity resolution as
explained further in step 5.

. Database Storage for Use Cases : Validated outputs are stored in a

database for further analysis and fine-tuning of the LLM. This repository of
use cases facilitates iterative refinement of the generation process, enabling
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continuous improvement based on feedback and real-world application sce-
narios.

5. Ambiguity Resolution : In cases where the generated model fails the val-
idation ste;ﬂ or encounters unresolved ambiguity (e.g. non explicable issue),
our solution re-prompt the LLM with the occurred error and possibly addi-
tional description from the user, enabling it to revisit and refine its under-
standing of the domain context. Additionally, access to external tools such
as API search calls and documentation enhances the LLM’s understanding
and resolution of ambiguous requests.

6. Fine-tuning and model improvements : After correcting the generate
model based on iterative reasoning and additional inputs, the validated re-
sults get stored, after gathering enough validated models, we can use them
to fine-tune our LLMs.
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Fig. 1: Design of the proposed solution.

4 Tool Support

This section provides a comprehensive overview of the implementation details
of our study, including the used models and the specific use cases to which they
were applied. We will delve into the technical aspects of the system. Additionally,
we will present the various models selected for this research, elucidating their
roles and functionalities within our framework. Lastly, we will describe one use
case in detail, highlighting the practical applications and the outcomes observed.

5 there is a maximum iteration number concluded by learning from most examples
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Algorithm 1 Iterative Prompting for Model Validation.

Input: Description text (NLD)
Output: Validated meta-model
Procedure:

Generate the meta-model or model from the description text

while True do

Parse the model using dom__grammar to check for syntactic errors

if no syntactic errors found then
break
else

Get the list of syntactic errors (from pyecore use)

for each error in the list do

Pass the meta-model and the error to the LLM

Ask the LLM to fix the error
Update the meta-model with the fix
end for
end if
end while
Return Validated meta-model

ChatPromptTemplate

SYSTEM

You are a systems engineer, expert in model driven engineering and meta-modeling.

You have access to the following tools: {tool_desc}

Instructions:

1.Start by identifying and breaking down the core concepts,

relationships, and attributes mentioned in the natural language description.

2. Use a structured approach to map these concepts to the appropriate Ecore constructs.
3. If tool usage is needed the input to the tool, in a JSON format

representing the kwargs (e.g. {{"text": "hello world”, "num_beams”: 5}})

3.Final Output the resulting Ecore model.
The XML output should be clean, well-formed, and compliant with Ecore standards.
Your FINAL OUTPUT should always follow this format :

sl
YOUR CODE HERE

HUMAN

Convert the following description into an ecore xmi representation:

{ description}

If you need it here's a technical document of how to write correct ecore file:
{Ecore Contraints}

(a) Initital prompt template

5

& ChatPromptTemplate

SYSTEM
You are a systems engineer, expert in model driven engineering and meta-modeling.

Instructions

1. Carefully review the errors and previous Ecore files.
2. Correct any mistakes or inconsistencies found.

3. Output the corrected Ecore file.

Your OUTPUT should always follow this format :

xml
<YOUR CODE HERE =

HUMAN
Fix the following error: {error}

in the following ecore file : {ecore}

(b) Error fixing prompt template

Fig. 2: Prompt templates.
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4.1 Implementation

In order to implement our approach, we have started by studying several existing
LLMs. We summarize in Table[I| the most significant ones for our purposes while
providing more details on the model weights, if they are open source and how
they have been used. Other models were utilized in our study, and they will
be discussed subsequently with an analysis of the reasons for not considering
them viable options. Notice that both weights and contextual window columns
stand for the amount of, respectively, the trainable LLM’s parameters, and the
tokens we can pass to an LLM without loosing track of its context [8]. Referenced
Hugging-Chat-API E| is an open source project to access the HuggingFace Chat E]
granting access to the latest models in a production environment. Grid5000 ﬁ is
is a large-scale and flexible test-bed for experiment-driven research in all areas
of computer science. We used Grid5000 to run lighter models and the Hugging-
Chat-API to use already deployed heavier models.

Table 1: Available Large Language Models characteristics.

Name Owner |Model Weights Inference Endpoint|Open-Source|Context Window
GPT-4 Omni OpenAl |- OpenAl API No 128K
GPT-4 Turbo OpenAl  [8x220 billion parameters|OpenAl API No 128K
GPT-3.5 Turbo |OpenAl 175 billion parameters |OpenAl API No 16K
LLaMA3-70B Meta 70 billion parameters Grid5000 Yes 8K
LLaMA3-8B Meta 8 billion parameters HuggingChat API Yes 8K
LLaMA2-7B Meta 7 billion parametes Grid5000 Yes 32K
Mixtral-8x7B Mistral AI|8x7 billion parameters |HuggingChat API Yes 32K
Mistral-7B Mistral AI|7 billion parameters Grid5000 Yes 8K
Gemma-7B Google 7 billion parameters HuggingChat API Yes 8K
Gemma-2B Google 2 billion parameters Grid5000 Yes 8K
C4AI-Command-r|C4AT 104 billion parameters |HuggingChat API Yes 128K

Our main use case involved the generation and validation of Ecore models
using Pyecore for parsing the generated artifacts. We provided detailed man-
agement of these artifacts through several key steps. First, a natural language
description was used as a prompt parameter to generate a model using a LLM.
Second, a technical Ecore description was employed as a prompt parameter to
give the language model better insight into writing syntactically correct Ecore
files. Third, we developed a model validator using Pyecore E| as a library for
parsing our produced models and metamodels with Python. The errors identi-
fied during this process were utilized in conjunction with iterative prompting
(see step 3 in Section [3)) as presented in Algorithm

5 https://github.com/Soulter/hugging-chat-api
" https://huggingface.co/chat

8 https://www.grid5000.fr/w/Grid5000 : Home

9 https

://github.com/pyecore/pyecore
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4.2 Experimentation

We applied our approach to several real-world use cases gathered from the liter-
ature. Table [2] cites some of them for illustration. During the experimentation,
we collected both the natural language description and the corresponding DSL
meta-model. We then applied our approach to generate the Ecore meta-model for
each use case. Lastly, we systemically compared our result with the one given by
the correspondent reference (mentioned Table . We noticed that our generated
output is identical to the existing result for all examples.

Table 2: Some Checked use cases.

Use Case ‘Reference

SimplePDL |https://eclipse.dev/atl/usecases/SimplePDL2Tina/

FSM ‘http ://melange.inria.fr/defining-an-executable-dsl/

‘Website Phone friendly‘https ://olegoaer.developpez.com/tutos/model/xtext/wdl/

GemRBACCTX ‘https ://orbilu.uni.lu/bitstream/10993/22759/1/codaspy2016.pdf

MontiArc [https://github.com/MontiCore/montiarc/blob/develop/languages/MontiArc.md

We now illustrate how our approach does work throughout one use case called
SimplePDL [2]. This stands for a DSL which describes software developpement
process. Here, we initially provide the LLM prompt with its natural language
description as well as the Ecore document type, and we get as an output the cor-
responding meta-model in Ecore format. Figure [3] shows the graphical diagram
of the meta-model.

© Process
T max_time: Eint

T min_time: Eint

0.* .
wor kDefinitions / \3”
wor kSequences

S WOI'kEDS(e—fl"l‘IOT‘ 1 0.* © WorkSequence
name: riny
oot g pr edecessor JinkToSuccessor |43 Name : EString
T min_time: Elnt =NT B jence’
T linkType : Wor kSequt Type

T max_time:Eint | Successor linkToPr edecessor | = condition : EString

1

0.
1 QworkDefinition -
<<enumeration>>
0.* 0.% Wor kSequenceType
quidances, uidances o +\ parameters = startToStart

y ~ startToFinish
© Guidance ® Parameter ~ finishToStart
&, description : EString NS

= finishToFinish

) © Resource
Ressour ces
&7 hame: EString

ressource | T OccurencesNb : Eint 0.*

Fig. 3: SimplePDL metamodel.

Later, we proceed as follows. The first one-shot output will be passed to
our verification module and checks whether it is correct. For instance, when we
applied GPT4-Turbo for this DSL, we found the following error : "Namespace
prefix xsi for type on eClassifiers is not defined, line 3, column 55
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https://orbilu.uni.lu/bitstream/10993/22759/1/codaspy2016.pdf
https://github.com/MontiCore/montiarc/blob/develop/languages/MontiArc.md
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(SIMPLEPDLO.ecore, line 3)". After error fix, the output is re-parsed again
and another error is then found, namely, Unknown eType in eClassifier”.
Similarly, the erroneous output is fixed and checked again. At this level, no more
errors are detected. It concludes that in two iterations we have an error free
Ecore file.

5 Learned Lessons

In order to evaluate the proposed method, namely, LLM-driven domain specific
modelling, we discuss in this section some analytic studies we carried out for this
purpose. We systematically comment on our implementation details, describe
usage and validation of our meta-model, and present qualitative results. The
analysis presented in the remainder of this paper is stored in a preliminary
dataset available online [

5.1 Syntactic Error Frequency by Error Category

The syntactic errors generated by different LLMs (mentioned on Figure [5]) were
categorized into the most frequent types where "Other" category is left for less
common errors:

— Invalid comment : this category includes errors related to the use of unsup-
ported tags in XMI.

— Start tag : This category encompasses errors occurring at the beginning of
the file.

— Wrong declaration : This category includes errors involving the use of incor-
rect types or attributes.

— Other : This category comprises miscellaneous errors, including empty files
or unsupported syntax.

Figure [4] illustrates the overall occurrence (denoted frequency) of errors catego-
rized as "Invalid Comment," "Other," "Start Tag," and "Wrong Declaration".
This plot reveals that “Invalid Comment” is the most common error type, respec-
tively followed by “Other”, “Start Tag”, and “Wrong Declaration”. More precisely,
almost half encountered errors belong to the “Invalid Comment” category. This
is due to a confusion made by LLMs between XML [3] tags and Ecore serial-
ization (i.e. XMI tags). In order to fix detected issues we rely on our iterative
prompting method (see Section .

5.2 Syntactic Error Category Distribution by LLMs

The plot, shown in Figure [5] presents the error category distribution for each
LLMs being evaluated. LLMs with very low application frequency do not enable
us to generate well-formed Ecore code, i.e. no possible parse w.r.t standard

10 https://huggingface.co/datasets/VeryMadSoul/Errors
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Error Frequency by Category
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Invalid Comment Other Start Tag ‘Wrong Declaration
Error Category

Fig. 4: Error distribution by category.

syntax. In other word, those LLMs would generate code in XML rather than
XMI format with the prevalent error being “Start Tag” or “Empty File”. From
the plot, it is clear that “gpt-4.0”, “Llama-3-70B” and “Mixtral-8x7B” models have
a high frequency of “Invalid Comment” errors, while the other models exhibit
relatively fewer instances of other error categories, such as “Other”, “Start Tag”,
and “Wrong Declaration”.

5.3 Distribution of Use Case Resolutions for Each LLM

Table Blsummarizes the distribution of use case resolutions for each LLMs. These
statistics were collected based on the resolution rate of one use case (i.e Sim-
plePDL) for which we repeated our full process given in Figure|l| 40 times. This
aims at evaluate the LLMs efficiency. Notice since this task is time and resources
consuming, we have been limited to fix the execution repetition to 40 times.

It makes sense to have a 0% correct output for zero-shot context as this work
aims to solve exactly that, we also saw that the number of low correct outputs
using our prompt for GPT-40 is due to generating comment tags that aren’t
supported while most of these mistakes would be correct, in 8 cases the model
could not resolve the issue. Meta-Llama-3 being the best at generating correct
ecore format using only the technical file we provide, still noticing an increase
using iterative prompting. Even in the case of Mixtral-8x7B the results tend to
improve using iterative prompting

Similar to GTP-4o0, the other OPENATI’s models tend to perform better at
error resolution but not at one shot generation. In terms of the type of error
committed, they tend to generated a bit more diverse errors, entailing a further
hypothesis, that GPT-40 has seen more XML syntax in its training data.
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Error Category Distribution by Model
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Fig.5: Error Category Distribution by each of Checked LLMs.

Table 3: Success rate of the same task using different contexts, evaluated over N

times.

Model Context provided Correct output N

GPT-40 Zero-shot 0 40
Our one-shot prompt 2 40
Our iterative prompting 32 40

meta-llama/Meta-Llama-3-70B-Instruct Zero-shot 0 40
Our on-shot prompt 21 40
Our iterative prompting 30 40

mistralai/Mixtral-8x7B-Instruct-v0.1 ~ Zero-shot 0 40
Our one-shot Prompt 8 40
Our iterative prompting 18 40
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6 Conclusion

The rapid growth of LLMs enabled remarkable achievements for SE, including
the ability to perform several code tasks based on text-only descriptions. For
instance, it is possible to transform, add comments, think on and summarize
code. In this paper, we tackled the DSLs’ development following OMG MDA
principles, i.e. starting with the design of meta-model for a future DSL. The
result does respect a required output format and it is generated based on two
input parameters: human friendly description and modelling language document
type. However, the one-shot generation results often contain syntactic and se-
mantics errors. We applied an iterative prompting approach and LLM agents to
solve these issues. Detected errors are given back as input for the iterative pro-
cess until correctness achievement. We checked our suggested process on several
real-world case studies and performed an analytic study in order to show the
advantages and actual LLMs limits to be dealt with in the future.

To sum up, while we believe that LLMs are potentially revolutionising soft-
ware development, little attention in the literature is given to Model Based
Software Engineering (MBSE). We also notice that there still have relevant ques-
tionable limitations to be addressed in term of insufficient training on specific
languages, explicability, reliability, scalability, and resources consumption. Those
challenges once dealt with, LLMs would be insightful assistant for model-based
software engineering.

Aknowledgement: This work is supported and funded by IBCO-CIMI-CNRS
research project (call 2021-2024).
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