Menu:

Publications


Patents

[2] S. Fuertes, G. Picart, L. Chaari, A. Ferrari, C. Richard, J.-Y. Tourneret Method for detecting atypical behaviour of telemetry parameters, December 2015. PCT/EP2016080535. [ bib ]
[1] L. Chaari, J.-C. Pesquet, S. Mériaux, and P. Ciuciu. Method for performing parallel magnetic resonance imaging, March 2012. PCT/IB2011/002330. [ bib ]

Books & chapters

[5] A. Bennour, A. Bouridane, L. Chaari Ed., Intelligent Systems and Pattern recognition, ISPR 2023 proceedings. [ Book | bib ]
[4] L. Chaari Ed., Digital Health in Focus of Predictive, Preventive and Personalised Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2020. [ Book | bib ]
[3] L. Chaari Ed., Digital Health Approach for Predictive, Preventive, Personalised and Participatory Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2019. [ Book | bib ]
[2] P. Ciuciu, F. Forbes, T. Vincent, and L. Chaari. Joint detection-estimation in functional MRI. In J.-F. Giovannelli and J. Idier, editors, Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing. Wiley-ISTE, 2015, chapter 7. [ Book | bib ]
[1] P. Ciuciu, F. Forbes, T. Vincent, and L. Chaari. Détection-estimation conjointe en IRM fonctionnelle. In J.-F. Giovannelli and J. Idier, editors, Méthodes d'inversion appliquées au traitement du signal et de l'image. Hermes Science Publishing, 2013, chapter 7. [ Book | bib ]

Journal papers

[29] T. B. A Erep, L. Chaari, P. Ele, E. Sobngwi. Self-Calibrated Convolutions Towards Multimodal RGB-Depth Food Image Semantic Segmentation, Engineering Applications of Artificial Intelligence, submitted, 2025 bib | .pdf ]
[28] M. El Sakka, M. Ivanovici, L. Chaari, J. Mothe. A review of CNN applications in smart agriculture using multimodal data, Sensors, vol. 25, no. 2, 2025 bib | .pdf]
[27] S. Chaabene, A. Boudaya, B. Bouaziz, L. Chaari. An overview of methods and techniques in multimodal data fusion with application to healthcare, International Journal of Data Science and Analytics, doi.org/10.1007/s41060-025-00715-0, 2024 bib | .pdf]
[26] A. Boudaya, A. Chaabene, B. Bouaziz, A. Hokelmann, L. Chaari. MCI detection using EEG and HRV data, Digital Signal Processing, vol. 147, April 2024.  bib | .pdf ] 
[25] M. Fakhfakh, L. Chaari. Bayesian optimization for sparse neural networks with trainable activation functions, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-14, April 2024. bib | .pdf ]  
[24] T.B. A Erep, L. Chaari.  mid-DeepLabv3+: A novel approach for image semantic segmentation applied to African food dietary assessment, Sensors, 24(1), 209, 2023. bib | .pdf ] 
[23] M. Fakhfakh, L. Chaari, B. Bouaziz, F. Gargouri. Non‑smooth Bayesian learning for artificial neural networks, Journal of Ambient Intelligence and Humanized Computing, vol. 14, pp. 13813-13831, 2022. [ bib | .pdf ]
[22] S. Chaabene, A. Boudaya, B. Bouaziz, A. Hokelmann, A. Ammar, L. Chaari. Convolutional neural network for drowsiness detection using EEG signals, Sensors, vol. 21, no. 5, 2021. [ bib | .pdf ]
[21] A. Ammar et al. Effects of home confinement on mental health and lifestyle behaviours during the COVID-19 outbreak: insights from the ECLB-COVID19 multicentre study. Biol Sport, 38(1):9-21,2021. [ bib | .pdf ]
[20] A. Ammar et al. Psychological consequences of COVID-19 home confinement: The ECLB-COVID19 multicenter study. PLoS One, 5;15(11),2020. [ bib | .pdf ]
[19] A. Ammar et al. COVID-19 Home Confinement Negatively Impacts Social Participation and Life Satisfaction: A Worldwide Multicenter Study International Journal of Environmental Research and Public Health, 17, 6237, 2020. [ bib | .pdf ]
[18] A. Ammar et al. Effects of COVID-19 home confinement on physical activity and eating behaviour Preliminary results of the ECLB-COVID19 international online-survey. Nutrition and Public Health, 12(6), 1583, 2020. [ bib | .pdf ]
[17] M. Fakhfakh, B. Bouaziz, F. Gargouri, L. Chaari. ProgNet: Covid-19 prognosis using recurrent and convolutional neural networks. The Open Medical Imaging Journal, vol. 12, pp. 11-22, 2020. [ bib | .pdf ]
[16] L Chaari, O. Golubnitschaja. Covid-19 pandemic by the “real-time” monitoring: the Tunisian case and lessons for global epidemics in the context of 3PM strategies. EPMA journal, 11(2): 133–138, 2020. [ bib | .pdf ]
[15] W. Gharbi, L Chaari, A. Benazza-Benyahia. Unsupervised Bayesian change detection for remotely sensed images. Signal, Image and Video Processing, Elsevier, Vol. 15, pp. 205213, 2020. [ bib | .pdf ]
[14] M. Fakhfakh, L Chaari, N. Fakhfakh. Bayesian curved lane estimation for autonomous driving. Journal of Ambient Intelligence and Humanized Computing, 2020. DOI:10.1007/s12652-020-01688-7 [ bib | .pdf ]
[13] S. Chaabene, L Chaari, A. Kallel. Bayesian sparse regularization for parallel MRI reconstruction using Complex Bernoulli-Laplace mixture priors. Signal, Image and Video Processing, Elsevier, 2019. DOI: 10.1007/s11760-019-01567-5 [ bib | .pdf ]
[12] L Chaari. A Bayesian grouplet transform. Signal, Image and Video Processing, Elsevier, 13, pp.871–878, 2019. [ bib | .pdf ]
[11] M. Albughdadi, L Chaari, J.-Y Tourneret, F Forbes, P Ciuciu. Hemodynamic Brain Parcellation Using A Non-Parametric Bayesian Approach. Signal Processing, Elsevier, 135, pp.132-146, 2017. [ bib | .pdf ]
[10] L. Chaari, S. Badillo, T. Vincent, G. Dehaene-Lambertz, F. Forbes, P. Ciuciu Subject-level Joint Parcellation-Detection-Estimation in fMRI. https://hal.inria.fr/hal-01255465, 2016. [ bib | .pdf ]
[9] A. Laruelo, L. Chaari, J.-Y. Tourneret, H. Batatia, S. Ken, B. Rowland, R. Ferrand, A. Laprie. Spectral-spatial regularization to improve MRSI quantification. NMR in Biomedicine, vol. 29, no. 7, pp. 918–931, Jul. 2016. [ bib | .pdf ]
[8] L. Chaari, J.-Y Tourneret, C. Chaux and H. Batatia. A Hamiltonian Monte Carlo Method for Non-Smooth Energy Sampling. IEEE Transactions on Signal Processing, vol. 64, no. 21, pp. 5585 - 5594, Nov. 2016 bib | .pdf ]
[7] F. Costa, H. Batatia, L. Chaari, J.-Y. Tourneret. Sparse EEG Source Localization using Bernoulli Laplacian Priors. IEEE Tran. Biomedical Engineering, vol. 62, no. 12, pp. 2888 - 2898, Dec. 2015. [ bib | .pdf ]
[6] T. Vincent, S. Badillo, L. Risser, L. Chaari, C. Bakhous, F. Forbes and P. Ciuciu. Flexible multivariate hemodynamics fMRI data analyses and simulations with PyHRF. Frontiers in Neuroscience, vol. 8, no. 67, 2014. [ bib  .pdf ]
[5] L. Chaari, P. Ciuciu, S. Mériaux, and J.-Ch. Pesquet. Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI. Magnetic Resonance Materials in Physics, Biology and Medicine (MAGMA), 27(6):509-529, 2014. [ bib | .pdf ]
[4] L. Chaari, T. Vincent, F. Forbes, M. Dojat, and P. Ciuciu. Fast joint detection-estimation of evoked brain activity in event-related fmri using a variational approach. IEEE Transactions on Medical Imaging, 32(5):821-837, May 2013. [ bib | .pdf ]
[3] L. Chaari, J.-C. Pesquet, J.-Y. Tourneret, P. Ciuciu, and A. Benazza-Benyahia. A hierarchical Bayesian model for frame representation. IEEE Transactions on Signal Processing, 58(11):5560-5571, Nov. 2010. [ bib | .pdf ]
[2] L. Chaari, J.-C. Pesquet, A. Benazza-Benyahia, and P. Ciuciu. A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging. Medical Image Analysis, 15(2):185-201, Nov. 2011. [ bib | .pdf ]
[1] L. Chaari, E. Chouzenoux, N. Pustelnik, C. Chaux, and S. Moussaoui. Optimed : Optimisation itérative pour la résolution de problèmes inverses de grande taille. Traitement du Signal, 28(3-4), 2011. [ bib | .pdf ]

Conference papers

[61] C. Millan, L. Chaari, A. Aissaoui, E. Gilbert. Attack originality detector using machine learning. In Italian Conference on Cybersecurity (ITASEC), Bologna, Italy, February 3-5, 2025. bib | .pdf ]
[60] T. B. A Erep, L. Chaari, P. Ele, E. Sobngwi. ESENET-D: Efficient Semantic Segmentation for RGB-Depth food images . In IEEE International Workshop on Machine Learning for Signal Processing (MLSP) , London, UK, September 21-25, 2024. bib | .pdf ]
[59] M. Fakhfakh, L. Chaari. Fully automatic Bayesian method for trainable activation function and deep neural networks. In European Signal Processing Conference (EUSIPCO), Lyon, France, August 26-30, 2024. bib | .pdf ]
[58] W. Labriji, S. Ken, G. Dormio, J.-Y. Tourneret, E. Moyal Cohen-Jonathan, L. Chaari. Bayesian Sparse model for complex-valued magnetic resonance spectroscopy restoration. In International Symposium on Biomedical Imaging (ISBI) Athens, Greece, May 27-30, 2024. [ bib | .pdf ]
[57] I. Traoré, I. Megdiche, J. Marquet-Doleac, L. Chaari. A machine learning technique for device non-wear detection in children with ADHD. In International Workshop on Health Informatics: IT Innovations and Disruptive Approaches in the Digital Health Era (HOPE), Giza, Egypt, December 4-7, 2023. (Best workshops paper) [ bib | .pdf ]
[56] I. Traoré, I. Megdiche, J. Marquet-Doleac, L. Chaari. A cross-validation approach for classifying physical activity intensity: a case study in children with attention deficit/hyperactivity disorder. In ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), Giza, Egypt, December 4-7, 2023.bib | .pdf ]
[55] M. Fakhfakh, L. Chaari. A fully automatic Bayesian model for adaptive functions in artificial neural networks. In International Conference on Innovations in Intelligent Systems and Applications (INISTA), Hammamet, Tunisia, September 20-23, 2023.bib | .pdf ]
[54] S. Chaabene, B. Bouaiz, A. Boudaya, L. Chaari, A. Hokelmann. Early mild cognitive impairment detection using cognitive-motor tasks and machine learning. In International Conference on Innovations in Intelligent Systems and Applications (INISTA), Hammamet, Tunisia, September 20-23, 2023.bib | .pdf ]
[53] S. Chaabene, B. Haroun Hassan, A. Boudaya, L. Chaari, B. Bouaziz. New MCI detection method based on Transformer and EEG Data. In European Signal Processing Conference (EUSIPCO), Helsinki, Finland, September 4-8, 2023. [ bib | .pdf ]
[52] W. Nicolas, M. Suhairi Subhi, A. Renard, G. M. Garcia Romero, M. Ouederni, L. Chaari. How AI can advance MDE ?. In Int. Conference on Intelligent Systems & Pattern Recognition (ISPR), Hammamet, Tunisia, May 11-13, 2023. [ bib | .pdf ]
[51] A. Boudaya, S. Chaabene, B. Bouaziz, H. Zouari, S. Ben Jemaa, L. Chaari.  MCI identification based on EEG signal during cognitive test. In IEEE International Conference on Technology Innovation for Healthcare (ICTIH), Magdeburg, Germany, September 14-16, 2022. [ bib | .pdf ]
[50] A. Quintero-Rincón, L. Chaari, H. Batatia. Robust analysis and spectral-based deep learning to detect driving fatigue from EEG signals. In IEEE International Conference on Technology Innovation for Healthcare (ICTIH), Magdeburg, Germany, September 14-16, 2022. [ bib | .pdf ]
[49] M. Fakhfakh, B. Bouaziz, L. Chaari, F. Gargouri. Efficient Bayesian learning of sparse deep artificial neural networks. In Symposium on Intelligent Data Analysis , Rennes, France, April 20-22, 2022. [ bib | .pdf ]
[48] M. Fakhfakh, B. Bouaziz, F. Gargouri, L. Chaari. Bayesian optimization using Hamiltonian dynamics for sparse artificial neural networks. In International Symposium on Biomedical Imaging (ISBI) , Kolkata, India, March 28-31, 2022. [ bib | .pdf ]
[47] M. Ouederni, L. Chaari, Q. Fan and Q. Mu. Applying MDE for Healthcare systems. In International Conference on Digital Health Technologies (ICDHT), Hammamet, Tunisia, December 20-22, 2021. [ bib | .pdf ]
[46] A. Boudaya, S. Chaabene, B. Bouaziz, H. Zouari, S. Ben Jemea, L. Chaari. Physiological/Non-physiological artifacts classification using EEG signals based on CNN In International Conference on Digital Health Technologies (ICDHT), Hammamet, Tunisia, December 20-22, 2021. [ bib | .pdf ]
[45] M. Fakhfakh, B. Bouaziz, L. Chaari. Bayesian optimization for artificial neural networks: application to Covid-19 image classification. In International Conference on Digital Health Technologies (ICDHT), Hammamet, Tunisia, December 20-22, 2021. [ bib | .pdf ]
[44] M. Fakhfakh, B. Bouaziz, H. Batatia, L. Chaari. Bayesian optimization for sparse artificial neural networks: application to change detection in remote sensing. International Conference on Information Technology and Applications (ICITA), Dubai, UAE, November 13-4, 2021. [ bib | .pdf ]
[43] A. Boudaya, S. Chaabene, B. Bouaziz, H. Batatia, H. Zouari, S. Ben Jemea, L. Chaari. A convolutional neural network for artifacts detection in EEG data. International Conference on Information Technology and Applications (ICITA), Dubai, UAE, November 13-4, 2021. [ bib | .pdf ]
[42] G. Geoffroy, L. Chaari, J.-Y. Tourneret, H. Wendt. Drowsiness Detection Using Joint EEG-ECG Data With Deep Learning. In EUropean SIgnal Processing COnference (EUSIPCO), Dublin, Ireland, August 23-27, 2021. [ bib | .pdf ]
[41] S. Zorgui, S. Chaabene, B. Bouaziz, H. Batatia and L. Chaari. A convolutional neural network for Lentigo diagnosis. In International Conference On Smart Living and Public Health (ICOST), Hammamet, Tunisia, June 24-26, 2020. [ bib | .pdf ]
[40] A. Boudaya, S. Chaabene, B. Bouaziz, L. Chaari, A. Ammar, A. Hokelmann. EEG-based Hypo-vigilance detection using convolutional neural network. In International Conference On Smart Living and Public Health (ICOST), Hammamet, Tunisia, June 24-26, 2020. [ bib | .pdf ]
[39] Y. Abichou, S. Chaabene and L. Chaari. A sleep monitoring method with EEG signals. In International Conference on Digital Health Technologies (ICDHT), Hammamet, Tunisia, December 09-11, 2019. [ bib | .pdf ]
[38] W. Gharbi, L. Chaari and A. Benazza-Benyahia. Joint Bayesian Hyperspectral Unmixing for change detection. In Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, March 09-11, 2020. [ bib | .pdf ]
[37] B. Bouaziz, L. Chaari, H. Batatia and A. Quintero-Rincon. Epileptic seizure detection using a Convolutional Neural Network. In International Conference on Digital Health Technologies (ICDHT), Sfax, Tunisia, October 15-16, 2018. [ bib | .pdf ]
[36] I. Ghorbel, W. Gharbi, A. Benazza and L. Chaari. Bayesian compressed sensing for IoT : application to EEG recording. In International Conference on Digital Health Technologies (ICDHT), Sfax, Tunisia, October 15-16, 2018. [ bib | .pdf ]
[35] L. Chaari, J.-Y. Tourneret and H. Batatia. A Plug and Play Bayesian Algorithm for Solving Myope Inverse Problems. In EUropean SIgnal Processing COnference (EUSIPCO), Rome, Italy, September 3-7, 2018. [ bib | .pdf ]
[34] M. Fakhfakh, N. Fakhfakh and L. Chaari. Robust lane Extraction using Two-Dimension Declivity. In International Conference on Artificial Intelligence and Soft Computing, pp 14-24, Zakopane, Poland, June 3-7, 2018. [ bib | .pdf ]
[33] S. Chaabene, L. Chaari and A. Kallel. Sparse Bayesian pMRI Reconstruction With Complex Bernoulli-Laplace Mixture Priors. In IEEE Middle East Conference on Biomedical Engineering (MECBME), Tunis, Tunisia, March 28-30, 2018. [ bib | .pdf ]
[32] M. Albughdadi, L. Chaari and J.-Y. Tourneret. A hybrid inter and intra subject model for fMRI analysis. In IEEE Middle East Conference on Biomedical Engineering (MECBME), Tunis, Tunisia, March 28-30, 2018. [ bib | .pdf ]
[31] L. Chaari, J.-Y. Tourneret and H. Batatia. A general non-smooth Hamiltonian Monte Carlo scheme using Bayesian proximity operator calculation. In EUropean SIgnal Processing COnference (EUSIPCO), Kos, Greece, August 28- September 1, 2017. [ bib | .pdf ]
[30] M. Makki, I. Ghorbel, N. Gharbi and L. Chaari. A decision support system for high computing architectures for complex medical imaging algorithms. In Engineering Sciences for Biology and Medicine (ESBM), Sfax, Tunisia, May 4-7, 2017. [ bib | .pdf ]
[29] S. Chaabene and L. Chaari. A Bayesian myopic parallel MRI reconstruction. In Interna- tional Symposium on Signal, Image, Video and Communications (ISIVC), Tunis, Tunisia, November 21-23, 2016. [ bib | .pdf ]
[28] M. Albughdadi, L. Chaari and J.-Y. Tourneret. Adaptive Mean Shift Based Hemo- dynamic Brain Parcellation in fMRI. In Medical Imaging and Augmented Reality (MIAR), Bern, Swidzerland, August 24-26, 2016. [ bib | .pdf ]
[27] S. Fuertes, G. Picart, J.-Y. Tourneret, L. Chaari, A. Ferrari and C. Richard. Improving Spacecraft Health Monitoring with Automatic Anomaly Detection Techniques. In SpaceObs, Daejeon, Korea, May 2016. [ bib | .pdf ]
[26] A. Laruelo, L. Chaari, S. Ken, J.-Y. Tourneret, H. Batatia and A. Laprie. MRSI data unmixing using spatial and spectral priors in transformed domains. In IEEE International Sympsium on Biomedical Imaging (ISBI), Prague, Czech Republic, April 2016. [ bib | .pdf ]
[25] M. Albughdadi, L. Chaari, F. Forbes, J.Y. Tourneret and P. Ciuciu. Multi-subject joint parcellation detection estimation in functional MRI. In IEEE International Sympsium on Biomedical Imaging (ISBI), Prague, Czech Republic, April 2016. [ bib | .pdf ]
[24] L. Chaari, J.-Y. Tourneret and C. Chaux. Sparse signal recovery using a Bernouilli generalized Gaussian prior. In European Signal Processing Conference (EUSIPCO), Nice, France, August 31- September 4, 2015. [ bib | .pdf ]
[23] M. Albughdadi, L. Chaari, F. Forbes, J.-Y. Tourneret and P. Ciuciu. Model Selection For Hemodynamic Brain Parcellation in fMRI. In European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, September 1-5, 2014. [ bib | .pdf ]
[22] L. Chaari, Hadj Batatia, Nicolas Dobigeon and J.-Y. Tourneret. A hierarchical sparsity-smoothness Bayesian model for l0 + l1 + l2 regularization In IEEE International Conference Acoustics, Speech, and Signal (ICASSP), Florence, Italy, May 4 - 9 2014. [ bib | .pdf ]
[21] L. Chaari, H. Batatia and J.-Y. Tourneret. Sparse Bayesian Image Restoration with Linear Operator Uncertainties with Application to EEG Signal Recovery. In Middle East Conference on Biomedical Engineering (MECBME) , Doha, Qatar, February 17-20 2014. [ bib | .pdf ]
[20] L. Chaari, J.-Y. Tourneret and H. Batatia. Sparse Bayesian regularization using Bernoulli-Laplacian priors. In European Signal Processing Conference (EUSIPCO), Marrakech, Morocco, September 9-13, 2013. [ bib | .pdf ]
[19] A. Laruelo, L. Chaari, H. Batatia, S. Ken, B. Rowland, J.-Y. Tourneret and A. Laprie. Hybrid Sparse Regularization for Magnetic Resonance Spectroscopy. In IEEE International Conference of Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, July 3-7, 2013. [ bib | .pdf ]
[18] L. Chaari, F. Forbes, T. Vincent, and P. Ciuciu. Hemodynamic-informed parcellation of fMRI data in a variational joint detection estimation framework. In 15th Proc. MICCAI, LNCS Springer Verlag, Vol. 7512, p. 180-188, 2012. [ bib | .pdf ]
[17] L. Chaari, F. Forbes, T. Vincent, and P. Ciuciu. Robust voxel-wise Joint Detection Estimation of brain activity in fMRI. In IEEE International Conference on Image Processing (ICIP), p. 1273-1276, Orlando, USA, September 30 - October 3, 2012. [ bib | .pdf ]
[16] C. Bakhous, F. Forbes, T. Vincent, L. Chaari, M. Dojat, and P. Ciuciu. Adaptive experimental condition selection in event-related fMRI. In IEEE International Sympsium on Biomedical Imaging (ISBI), p. 1755-1758, Barcelona, Spain, Mai, 2-5 2012. [ bib | .pdf ]
[15] L. Chaari, F. Forbes, T. Vincent, and P. Ciuciu. Parcel-free joint detection-estimation in fMRI. In Journées de Statistique de la Société Franaise de Statistique (SFdS), Brussels, Belgium, Mai 21 - 25 2012. [ bib | .pdf ]
[14] C. Bakhous, F. Forbes, T. Vincent, L. Chaari, M. Dojat, and P. Ciuciu. Sélection de variable dans un cadre bayésien de traitement de données IRM fonctionnelle. In Journées de Statistique de la Société Franaise de Statistique (SFdS), Brussels, Belgium, Mai 21 - 25 2012. [ bib | .pdf ]
[13] L. Chaari, F. Forbes, T. Vincent, M. Dojat, and P. Ciuciu. Variational solution to the joint detection estimation of brain activity in fMRI. In 15th Proc. MICCAI, LNCS Springer Verlag, Vol. 6892, p. 260-268, 2011. [ bib | .pdf ]
[12] L. Chaari, F. Forbes, P. Ciuciu, T. Vincent, and M. Dojat. Bayesian variational approximation for the joint detection estimation of brain activity in fMRI. In IEEE Workshop on Statistical Signal Processing (SSP), Nice, France, June, 28-30 2011. [ bib | .pdf ]
[11] L. Chaari, J.-C. Pesquet, J.-Y. Tourneret, and P. Ciuciu. Parameter estimation for hybrid wavelet-total variation regularization. In IEEE Workshop on Statistical Signal Processing (SSP), Nice, France, June, 28-30 2011. [ bib | .pdf ]
[10] L. Chaari, F. Forbes, P. Ciuciu, T. Vincent, and M. Dojat. A variational Bayesian approach for the joint detection estimation of brain activity in functional MRI. In Journées de Statistique de la Société Franaise de Statistique (SFdS), Tunis, Tunisia, Mai 23 - 27 2011. [ bib | .pdf ]
[9] L. Chaari, S. Mériaux, S. Badillo, P. Ciuciu, and J.-C. Pesquet. 3D wavelet-based regularization for parallel MRI reconstruction: impact on subject and group-level statistical sensitivity in fMRI. In IEEE International Sympsium on Biomedical Imaging (ISBI), pages 460-464, Chicago, USA, March 30-April 2 2011. [ bib | .pdf ]
[8] L. Chaari, S. Mériaux, J.-C. Pesquet, and P. Ciuciu. Impact of the parallel imaging reconstruction algorithm on brain activity detection in fMRI. In International Symposium on Applied Sciences in Biomedical and Communication Technologies, Roma, Italy, November, 7-10 2010. [ bib | .pdf ]
[7] L. Chaari, S. Mériaux, J.-C. Pesquet, and P. Ciuciu. Impact of the parallel imaging reconstruction algorithm on the statistical sensitivity in fMRI. In 16th Annual Meeting of the Organization for Human Brain Mapping, Barcelona, Spain, June 6-10 2010. [ bib | .pdf ]
[6] L. Chaari, J.-C. Pesquet, J.-Y. Tourneret, P. Ciuciu, and A. Benazza-Benyahia. A hierarchical Bayesian model for frame representation. In IEEE International Conference Acoustics, Speech, and Signal (ICASSP), pages 4086-4089, Dallas, USA, March 14 - 19 2010. [ bib | .pdf ]
[5] L. Chaari, A. Benazza-Benyahia, J.-C. Pesquet, and P. Ciuciu. Wavelet based parallel MRI regularization using bivariate sparsity promoting priors. In IEEE International Conference on Image Processing (ICIP), pages 460-464, Cairo, Egypt, November 7-11 2009. [ bib | .pdf ]
[4] L. Chaari, N. Pustelnik, C. Chaux, and J.-C. Pesquet. Solving inverse problems with overcomplete transforms and convex optimization techniques. In Society of Photo-optical Instrumentation Engineers (SPIE) Conference, San Diego, USA, August 2-6 2009. [ bib | .pdf ]
[3] L. Chaari, P. Ciuciu, A. Benazza-Benyahia, and J.-C. Pesquet. Performance of three parallel MRI reconstruction mthods in the presence of coil sensitivity map errors. In International Society for Magnetic Resonance in Medicine (ISMRM) Meeting, Honolulu, USA, April 18-24 2009. [ bib | .pdf ]
[2] L. Chaari, J.-C. Pesquet, A. Benazza-Benyahia, and P. Ciuciu. Minimization of a sparsity promoting criterion for the recovery of complex-valued signals. In Signal Processing with Adaptive Sparse Structured Representations Workshop (SPARS), Saint-Malo, France, April 6-9 2009. [ bib | .pdf ]
[1] L. Chaari, J.-C. Pesquet, A. Benazza-Benyahia, and P. Ciuciu. Autocalibrated parallel MRI reconstruction in the wavelet domain. In IEEE International Sympsium on Biomedical Imaging (ISBI), pages 756-759, Paris, France, Mai 14-17 2008. [ bib | .pdf ]